
NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 1

queryoPlatform contex

SAP HANA Cloud Platform End-to-End-Development Scenarios

Getting Started

Develop Your First SAP HANA Native Application

on SAP HANA Cloud Platform Using the SAP

HANA Web-based Development Workbench

Version 1.0 | June 2014 | Bertram Ganz, Jens Glander, Monika Kaiser, SAP AG

NOTE April 2016: THIS TUTORIAL IS OUTDATED

AND WILL NOT BE MAINTAINED ANY MORE

For the interactive online version of this tutorial document see SCN blog Try out Web-based
HANA XS Development on SAP HANA Cloud Platform

http://scn.sap.com/community/developer-center/cloud-platform/blog/2014/04/15/sap-hana-web-ide-online-tutorial
http://scn.sap.com/community/developer-center/cloud-platform/blog/2014/04/15/sap-hana-web-ide-online-tutorial

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 2

© Copyright 2014 SAP AG or an SAP affiliate company. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any purpose without the express permission of SAP AG.

The information contained herein may be changed without prior notice.
Some software products marketed by SAP AG and its distributors contain proprietary software components of other software vendors.

National product specifications may vary.
These materials are provided by SAP AG and its affiliated companies ("SAP Group") for informational purposes only, without

representation or warranty of any kind, and SAP Group shall not be liable for errors or omissions with respect to the materials. The only
warranties for SAP Group products and services are those that are set forth in the express warranty statements accompanying such

products and services, if any. Nothing herein should be construed as constituting an additional warranty.

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered trademarks of
SAP AG in Germany and other countries. Please see http://www.sap.com/corporate-en/legal/copyright/index.epx#trademark for

additional trademark information and notices.

This tutorial intends to complement SAP product documentation. While specific product features and procedures typically are explained in

a practical business context, it is not implied that those features and procedures are the only approach in solving a specific business
problem using SAP NetWeaver. Should you wish to receive additional information, clarification or support, please refer to SAP Consulting.

Any software coding and/or code lines / strings (“Code”) included in this documentation are only examples and are not intended to be
used in a productive system environment. The Code is only intended better explain and visualize the syntax and phrasing rules of certain

coding. SAP does not warrant the correctness and completeness of the Code given herein, and SAP shall not be liable for errors or
damages caused by the usage of the Code, except if such damages were caused by SAP intentionally or grossly negligent.

Disclaimer:
Some components of this product are based on Java™. Any code change in these components may cause unpredictable and severe

malfunctions and is therefore expressively prohibited, as is any decompilation of these components.
Any Java™ Source Code delivered with this product is only to be used by SAP’s Support Services and may not be modified or altered in

any way.

http://www.sap.com/corporate-en/legal/copyright/index.epx#trademark

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 3

Table of Contents
1 Introduction ... 5

1.1 What Do You Get Here? .. 5
1.2 Intended Audience .. 5
1.3 Applicable Releases .. 5
1.4 End-2-End Development Scenario Overview ... 5
1.5 Development Steps in the Corresponding HANA Layers .. 6
1.6 How to Run This Tutorial ... 7

2 Prerequisites of Web-based Development: Account Setup .. 8

2.1 Create your Free Trial Developer Account ... 9
2.2 Create a new SAP HANA Trial Instance .. 13
2.3 Start SAP HANA Web-based Development Workbench ... 15
2.4 Remember Your Data.. 17

3 Build a Simple SAP HANA Native PersonsList Application .. 17

3.1 Step 1: Create new SAP HANA native Application within Web IDE .. 19

3.1.1 Create blank SAP HANA XS Application .. 19
3.1.2 Run Blank SAP HANA XS Application in Web Browser .. 21
3.1.3 Define Application Privileges in File .xsprivileges ... 22
3.1.4 Define Application Access in File .xsaccess ... 23

3.2 Step 2: Set up the Persistence Model in SAP HANA Database .. 24

3.2.1 Create Sub-Package data.. 24
3.2.2 Define Data Type Person within CDS Document .. 26
3.2.3 Display person Table in SAP HANA Database Catalog .. 28
3.2.4 Load Mock Data from a .csv File into Database Table .. 29
3.2.5 Add Database Sequence File to auto-generate Keys for new Records in Persons Table 33
3.2.6 Define new Role in File user.hdbrole.. 34
3.2.7 Grant Role user.hdbrole to Your User .. 34

3.3 Step 3: Build the Application Backend with SAP HANA Extended Application Services 37

3.3.1 Expose the Person Database Entity by means of OData Service ... 37
3.3.2 Implement Application Logic to Write new Records into Persons Table .. 40
3.3.3 Modify Role Definition in File user.hdbrole and Synchronize Roles ... 44
3.3.4 View the Application Backend in SAP HANA Catalog ... 45

3.4 Step 4: Build the Application Frontend with SAPUI5... 48

3.4.1 Create Package Structure for SAPUI5 Application Content .. 48
3.4.2 Design and Implement Application UI in SAPUI5 JavaScriptView ... 49
3.4.3 Create SAPUI5 View Controller with SAPUI5 OData Model ... 51
3.4.4 Implement index.html file with the SAPUI5 Application Bootstrap and Content 53

3.5 Run and Test the Final PersonsList Application ... 55

3.5.1 Recap: Anatomy of the Whole PersonsList Application .. 55
3.5.2 Run PersonsList Application on SAP HANA XS Server .. 56
3.5.3 Test PersonsList Application in Web Browser .. 57
3.5.4 Check OData Write Access in SAP HANA Database ... 58
3.5.5 Publish PersonsList application to other SAP HANA Trial Account Users 59

3.6 1. Extension: Writing Server-Side JavaScript Code .. 60

3.6.1 Create a Simple Server-Side JavaScript Service within Descriptor .xsjs ... 61
3.6.2 Add XSJS Service to Your PersonsList Web Application .. 61

4 Glossary .. 62
5 Related Content ... 65

5.1 SAP HANA Cloud Platform .. 65
5.2 SAP HANA Extended Application Services .. 65
5.3 UI Development Toolkit for HTML5 (aka SAPUI5) ..65

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 4

Source Code

Source Code 1: .xsprivileges file to define the application privilege p1940xxtrial.dev.perslist::Execute22
Source Code 2: .xsaccess file to define application access permissions ..23
Source Code 3: Data definition file mymodel.hdbdd ..26
Source Code 4: SQL call to view activated database objects in schema _SYS_BIC28
Source Code 5: pers.csv file to import mock data from a list of comma separated values30
Source Code 6: pers.hdbti file to import table data from .csv file ..30
Source Code 7: Database sequence file pers.hdbsequence ..33
Source Code 8: Role definition file user.hdbrole ..34
Source Code 9: Call SQL procedure HCP.HCP_GRANT_ROLE_TO_USER() to grant role user.hdbrole to

your user ..35
Source Code 10: OData service definition file pers.xsodata for service consumption of entity Person38
Source Code 11: New context ‘procedures’ with CDS-user-defined datatypes pers and errors in CDS Data

Definition File mymodel.hdbdd ..41
Source Code 12: SQLScript procedure createPerson.hdbprocedure to insert table records (via modification

exit for OData service) ..42
Source Code 13: Add modification exit to call SQLScript procedure createPerson.hdbprocedure in OData

service ..44
Source Code 14: Role definition file user.hdbrole ..44
Source Code 15: SQL procedure call HCP_SYNCHRONIZE_ROLES() to synchronize the developer's role

with the activated hdbroles from the developer's package ...45
Source Code 16: SAPUI5 application UI implemented in JavaScriptView file perslist.view.js.........................50
Source Code 17: SAPUI5 view controller JS file to call OData service exposed by pers.xsodata file52
Source Code 18: index.html with SAPUI5 application bootstrap and html content ..54
Source Code 19: Call SQL procedure HCP.HCP_GRANT_TO_PUBLIC_ROLE() to grant user role to public

role ...59
Source Code 20: Server-side JavaScript service definition file serverlogic.xsjs to retrieve the session user

name ..61
Source Code 21: index.html with the included xsjs service to display the logged on user in the application

header ..61

Figures

Figure 1: Overview of the development steps for the cloud-based SAP HANA native PersonsList application ..6
Figure 2: Three steps how a developer starts HANA XS development on a trial SAP HANA instance by means

of SAP HANA Web-based Development Workbench ...8
Figure 3: Architecture, artifacts and development steps of final SAP HANA native PersonsList application17
Figure 4: Step 1 – initial creation of a bare bone SAP HANA native application ...19
Figure 5: Step 2 - Backend part in SAP HANA database with CDS-based data persistence objects and initial

load ..24
Figure 6: Save and activate XS application content – what happens on SAP HANA Platform side?31
Figure 7: How the definition of application access, application privilege, user role and role assignment fit

together ..35
Figure 8: Step 3 - application backend part with OData service and HANA database procedure for read/write

logic ..37
Figure 9: OData service creation based on new OData service definition file inside HANA repository38
Figure 10: Step 4 - application frontend part with SAPUI5 view UI, controller and OData consumption48
Figure 11: User interface sketch diagram with Persons entry form and table control49
Figure 12: Anatomy of the whole PersonsList application implemented with SAP HANA extended application

services ..55
Figure 13: 1. Extension – Calling a server side XSJS service from SAPUI5 client by using JavaScript and

jQuery...60

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 5

1 Introduction

1.1 What Do You Get Here?

This guide describes step by step how you create your first HANA native application with a shared SAP HANA

database instance on the SAP HANA Cloud Platform trial landscape. You develop a PersonsList web

application end-to-end: from HANA database table definition to application logic implementation up to the

SAPUI5 user interface on frontend side.

 Platform: You build and run your application within a trial developer account on the SAP HANA Cloud

Platform

 Database: A shared SAP HANA database is used to create one column-based table to store Person data
 Runtime: Your application runs on SAP HANA extended application services (shortly SAP HANA XS, see

Glossary), a small footprint application server, including a web server and basis for an application

development platform inside SAP HANA.

 Design time: As development tool you purely use the SAP HANA Web-based Development Workbench

(shortly HANA Web IDE) that allows to develop the whole application in a browser without the need to

install any development tools (like the Eclipse IDE) on your client.

 Frontend: You will use the UI development toolkit for HTML5 (shortly SAPUI5), SAP’s HTML5 library that

enables to build responsive business applications for all devices.

1.2 Intended Audience

This guide is intended for all developers and programmers who may be new to the SAP HANA Cloud Platform

and/or SAP HANA native development based on SAP HANA extended application services (also known as

SAP HANA XS).

1.3 Applicable Releases

SAP HANA SPS 07 available as Trial SAP HANA instance on SAP HANA Cloud Platform where everyone can

get free access to. The described web-based HANA XS development scenario works also on a corresponding

on-premise SAP HANA instance, where you should better follow the on-premise tutorial version.

1.4 End-2-End Development Scenario Overview

The application frontend you build in this tutorial looks very simple. Person entries that are retrieved from the
SAP HANA database are displayed in a table control:

(1) You can enter first and last name of a new Person entry and write it to the backend with an input form

inside the table toolbar.

(2) On creation of a new Person entry a success message gets displayed.

(3) And the new entry gets instantly displayed in the table UI.

https://help.hana.ondemand.com/help/frameset.htm?38686b0610404a5e9c261d189cc33cb9.html
https://scn.sap.com/docs/DOC-53591

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 6

1.5 Development Steps in the Corresponding HANA Layers

Figure 1 illustrates the whole development scenario in a simple overview. The development process applied in
tutorial has been divided in five main development steps:

(0) You start with account sign-up and HANA database creation on SAP HANA Cloud Platform

(1) Create a bare-bone SAP HANA XS application

(2) Define a CDS-based data persistence object in the SAP HANA database

(3) Develop the application logic: create a OData-service to read and write person table records from and to

the HANA database

(4) Develop application frontend side: implement of a simple SAPUI5 user interface

Figure 1: Overview of the development steps for the cloud-based SAP HANA native PersonsList application

The main development steps and the corresponding sections of the end-to-end tutorial

Step Section What You will Learn

Prerequisites for Web-based

Development: account setup

 How to sign up for a free developer account on SAP HANA Cloud
Platform (trial account)

 How to create a new trial instance of the SAP HANA database
within your developer account

 How to start the SAP HANA Web-based Development Workbench
from your SAP HANA Cloud Platform cockpit.

Create new SAP HANA native

application within SAP HANA Web-

based Development Workbench

 Start the SAP HANA Web-based Development Workbench from
SAP HANA Cloud Platform cockpit

 Create blank SAP HANA XS application

 Run blank SAP HANA XS application in web browser

 Set up the application package structure in SAP HANA repository

Set up the persistence model in SAP

HANA database

 Create sub-package data

 Define data type Person within CDS document

 Load initial mock data from .csv file into database table

 Define new user role and grant it to your user

Build the application backend with SAP

HANA extended application services

 Expose the Person database entity by means of OData service

 Implement application logic to write new records into Persons
table (with OData modification exit that calls a SQLScript
procedure)

Build & run the SAPUI5 application

frontend UI consuming an OData

service to read and write Persons data

 How to build the SAPUI5 frontend with a simple input form to add
new Person entries and a table control to list stored ones.

 How to consume an OData service with read and write access in
SAPUI5.

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 7

1.6 How to Run This Tutorial

For executing this tutorial successfully we strongly recommend to read the following list of hints:

Hint 1: Which Web Browser Should You Use?

The HANA Web IDE tutorial has been proven to work best with Google Chrome browser in the newest

available version. We therefore recommend using Google Chrome when working through this tutorial.
Nevertheless the HANA Web IDE is also supported for latest Mozilla Firefox and Microsoft Internet Explorer
(10+) browsers.

Hint 2: First set-up Your Developer Account

Before you can start with the web-based HANA XS application development you need to setup your free
developer account on SAP HANA Cloud Platform as described in detail in chapter 2: Prerequisites of Web-

based Development: Account Setup.

Hint 3: For Quick Success just Follow the Hands-On Tasks

Many developers don’t like to read lengthy tutorials and often just want to execute the relevant steps to get the
tutorial application running. In case you want to process the whole tutorial for fast success you could only
follow the “Hands-on Tasks” sections that are highlighted with a blue border at the left side.

To jump from one hands-on task to another click the blue “previous”/”next” link buttons (see Screenshot

1, item 1) or search for “Hands-on Tasks”. For just quickly building the HANA XS Getting Started application of
this tutorial it is enough to execute the steps inside the Hands-on Tasks section.

To succeed even faster you can run the interactive online version of this PDF tutorial; see SCN blog Try

out Web-based HANA XS Development on SAP HANA Cloud Platform for more details ….

Screenshot 1: Hands-on Task section highlighted with blue border line and navigation links

NOTE: For a deeper understanding of SAP HANA XS application development on SAP HANA Cloud Platform
we recommend reading the complete tutorial. Also see the Glossary with terms and short terms used in the

tutorial.

Hint 4: Copy & Paste File and Package Names

During the tutorial you need to create many files and packages. Those files and package names that can be

copied and pasted without editing change are highlighted with a blue color like this example:

createPerson.hdbprocedure. Avoid typos by entering these blue highlighted strings with copy and paste

function.

Hint 5: Copy Source Code and Replace User Name

During the tutorial you need to copy and paste source code where user specific data is contained (mainly the

namespaces of your HANA artifacts will contain you user name).

When copying source code you need to replace the highlighted, user-specific red color string

p1940xxtrial with your own user name (e.g. p1940394512, see Screenshot 1, bullet item 2).

http://scn.sap.com/community/developer-center/cloud-platform/blog/2014/04/15/sap-hana-web-ide-online-tutorial
http://scn.sap.com/community/developer-center/cloud-platform/blog/2014/04/15/sap-hana-web-ide-online-tutorial

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 8

2 Prerequisites of Web-based Development: Account Setup

To start HANA native development within the HANA Web IDE you need to follow some setup steps before:

firstly the developer account creation on SAP HANA Cloud Platform trial landscape and secondly the SAP

HANA database creation.

The following sections 2.1, 2.2 and 2.3 describe how you as a developer …

1. create your free trial developer account on SAP HANA Cloud Platform,

2. login to the SAP HANA Cloud Platform cockpit with your trial account user and create a new instance

of the SAP HANA database,

3. start the SAP HANA Web-based Development Workbench (in short HANA Web IDE).

Figure 2: Three steps how a developer starts HANA XS development on a trial SAP HANA instance by means of

SAP HANA Web-based Development Workbench

NOTE: In a free developer account on SAP HANA Cloud Platform trial landscape you do not need to create a
HANA database user on your own. For sake of simplicity and security a new HANA database user that is

required for HANA native development is auto-created for you by the SAP HANA Cloud Platform when you
create a new developer account. This HANA database user has all pre-defined privileges that are needed for
HANA native development in the trial SAP HANA Cloud Platform landscape (with some specifics imposed by
user isolation requirements). In a productive SAP HANA Cloud Platform account or in an on-premise SAP

HANA system you need to create and configure the HANA database user manually.

Further information:

SAP HANA Cloud Platform Documentation: Using a Trial SAP HANA Instance

https://help.hana.ondemand.com/help/frameset.htm?38686b0610404a5e9c261d189cc33cb9.html

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 9

2.1 Create your Free Trial Developer Account

For developing and running Web applications on SAP HANA Cloud Platform you have to register once for a

SAP HANA Cloud Developer Account. A developer account offers you access to the trial landscape for an

unlimited period and is free of charge. You are restricted to one developer account.

Prerequisites

Depending on whether or not you already have an SAP ID user, the creation of a new developer account

on SAP HANA Cloud Platform differs.

Hands-on Tasks

Execute the following steps to register for your own SAP HANA Cloud Developer Account.

1. Open the SAP HANA Cloud Platform landing page https://account.hanatrial.ondemand.com in your

Google Chrome web browser.

2. If you do not yet have an SAP ID user choose Register to open a registration form. If you already

have an SAP ID user in place follow the below NOTE description.

NOTE: If you already have an own SAP ID user in place you can directly log on to your free SAP HANA

Cloud Platform developer account with your SAP ID or SCN credentials. If you do not yet have a
developer account it will be created for you. Carry out the following steps:

 Click Log On and sign in with your SAP ID or SCN credentials.

 Read and accept the SAP HANA Cloud Developer Edition License Agreement.

 Skip the next tutorial steps and move to the Result section of this hands-on task.

https://help.hana.ondemand.com/help/frameset.htm?e4986153bb571014a2ddc2fdd682ee90.html
https://account.hanatrial.ondemand.com/

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 10

3. On the registration form enter the corresponding fields, read the Terms of use and then select the

option that you have read and understand the Terms and Conditions of SAP HANA Cloud.

4. Press the Register button.

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 11

5. A registration confirmation message appears. An e-mail which contains the activation link of your

cloud developer account will be sent to you.

6. Open this mail which was sent to your e-mail account

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 12

7. Choose the Click here to activate your account button and an Account Successfully Activated

message will appear.

8. Choose Continue to launch the SAP HANA Cloud Cockpit of your newly created developer account.

9. As you launch your SAP HANA Cloud Platform Cockpit the first time a welcome page thanks you for

accepting the Developer Software License Agreement for the SAP HANA Cloud Platform.

10. Confirm the SAP HANA Cloud Platform Cockpit welcome message by clicking Continue.

Result

Finally the SAP HANA Cloud Platform Cockpit tool of your newly created SAP HANA Cloud Platform

Trial Developer Account opens with its Account Dashboard.

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 13

You have created your SAP HANA trial developer account data:

 Trial account name : p0123456trial

 (in the entire tutorial we use example account p1940394512trial)

 Trial account user : p0123456

 (in the entire tutorial we use example user p1940394512)

 Trial account password : ************

NOTE: With your trial account data you can directly log on to your developer account cockpit via URL

https://account.hanatrial.ondemand.com/cockpit .

Read more: SAP HANA Cloud Platform Documentation > Sign Up for a Developer Account

2.2 Create a new SAP HANA Trial Instance

Execute the following steps to create a new trial instance of the SAP HANA database on your trial SAP HANA

Cloud Platform account.

Prerequisites

 You have your free developer trial account data at hand.

Hands-on Tasks

11. Open your SAP HANA Cloud Platform cockpit: https://account.hanatrial.ondemand.com/cockpit.

If the Log on page is displayed then log on with your E-mail (or user ID) and password you specified

during your trial account registration.

12. In Content area select HANA XS Applications so that the corresponding Details page is displayed.

https://account.hanatrial.ondemand.com/cockpit
https://help.hana.ondemand.com/help/frameset.htm?65d74d39cb3a4bf8910cd36ec54d2b99.html
https://account.hanatrial.ondemand.com/cockpit

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 14

13. Execute this step only if you have already one or more Trial Instances of the SAP HANA database (e.g.

you have executed already the Eclipse-based HelloWorld SAP HANA XS tutorial before). In this case

we recommend that you delete your existing Trial Instance(s), because the package structure in Web

IDE will otherwise not be displayed correctly.

Then click Delete on your existing Trial Instances(s) to delete it.

IMPORTANT NOTE: Before you delete your Trial Instance(s) save the related project data (i.e. your

developed project content on trial), if this is relevant.

After deletion of all existing Trial Instances(s) the creating New Trial Instance link is displayed again.

14. Click on New Trial Instance link to display the instance creation section.

15. In the displayed section specify a name for your new Trial Instance (e.g. use dev) and then click Save

to create it.

Result

Your SAP HANA Trial Instance with the before specified name (e.g. 'dev') has been created.

In the displayed Trial Instance section you find the SAP HANA Web-based Development Workbench link to

launch your SAP HANA Web IDE tool.

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 15

Read more:

 SAP HANA Cloud Platform Documentation > Cockpit

 SAP HANA Cloud Platform Documentation > Creating a Trial SAP HANA Instance

2.3 Start SAP HANA Web-based Development Workbench

For development of our SAP HANA native PersonsList application you can now launch the SAP HANA Web-

based Development Workbench from the SAP HANA Cloud Platform cockpit.

Prerequisites

 You entered your trial account in the SAP HANA Cloud Platform cockpit.

 You created a new trial instance of the SAP HANA database.

Hands-on Tasks

16. In order to develop a new SAP HANA native application from scratch select Content node HANA XS

Applications and click link SAP HANA Web-based Development Workbench in section Details >

HANA XS Applications > Trial Instance – dev > Development Tools.

Result

The Editor of the SAP HANA Web-based Development Workbench starts in a new browser tab. Under

repository root node Content you see the initial package structure <trial-account-name>/<trial-
instance-name> e.g. p1940394512trial/dev:

https://help.hana.ondemand.com/help/frameset.htm?e47748b5bb571014afedc70595804f3e.html
https://help.hana.ondemand.com/help/frameset.htm?1a597a4505fc4178acf2232ee0fda081.html

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 16

In the tutorial the developed SAP HANA XS project will be located in sub-package perslist under your trial
account specific package. According to your own trial developer account name and the trial Instance name
this results in Content/<trial-account-name>/<trial-instance-name>/<project-name> e.g.

Content/p1940394512trial/dev/perslist.

NOTE: Where is the SAP HANA Database User?

In a free developer account on SAP HANA Cloud Platform trial landscape the HANA database user is auto-

created for you by the SAP HANA Cloud Platform when you create a new developer account. When starting
the HANA Web IDE from the SAP HANA Cloud Platform cockpit you login with the HANA database user but

not with your account user. For this reason you do not get your account user name p1940394512 displayed in

the header of the HANA Web IDE but see a HANA database user ID like DEV_6M6I3U… with an GUID-suffix

behind DEV_. When working through this tutorial you do not need to know/use this HANA database user ID.

What is the SAP HANA Web-based Development Workbench?

The SAP HANA Web-based Development Workbench (short term HANA Web IDE) is a browser-based
integrated development environment (IDE) to build SAP HANA native applications with a particular emphasis
on the following development experience qualities:

 Zero-installation: only a browser client is needed to start coding

 Simple and fast development roundtrip: just press 'run' and the app will start in the same browser

instantly

 Integrated debugging experience: set a breakpoint and start hunting your bug immediately

 Template-based development: build and launch simple applications in less than 60 seconds

 Database citizen: explore the SAP HANA database catalog and security artifacts and content easily

 Multi-device support: work on your code on the go on your favorite tablets

Further information

 SAP Help: SAP HANA Developer Guide > 3.9 Developing Applications in Web-based Environments

 SAP HANA Cloud Platform Documentation: Developing with SAP HANA Web-based Tools

 SCN blog What´s New? SAP HANA SPS 07 Web-based Development Workbench, Thomas Jung, SAP
AG, Dec 3, 2013

 SCN blog HANA XS development with the SPS07 Web IDE (focus on debugging), Kai Christoph
Mueller, SAP AG, Nov 27, 2013

http://help.sap.com/saphelp_hanaplatform/helpdata/en/7f/99b0f952d04792912587c99e299ef5/content.htm?frameset=/en/ab/bf2ea42af54211bceb466d06fde2e3/frameset.htm¤t_toc=/en/34/29fc63a1de4cd6876ea211dc86ee54/plain.htm&node_id=85
https://help.hana.ondemand.com/help/frameset.htm?ad3717d2c242436095fd12c158d7876f.html
http://scn.sap.com/community/developer-center/hana/blog/2013/12/03/what-s-new-sap-hana-sps-07-web-based-development-workbench
http://scn.sap.com/community/developer-center/hana/blog/2013/11/27/hana-xs-development-with-the-new-web-ide

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 17

 Video Web-based Development Workbench, Thomas Jung, SAP AG, Dec 18, 2013

2.4 Remember Your Data

After executing successfully the above described steps you have to remember your accounts data as you
need them later several times in the tutorial:

1. Free SAP HANA trial

developer account

Trial account name : p1940394512trial

Trial account user : p1940394512

Trial account password : ********

2. SAP HANA trial instance Database instance : dev

3. SAP HANA XS repository
location of PersonsList
project

Repository path: :

Content/p1940394512trial/dev/perslist

4. SAP HANA database
schema

Schema name: : _SYS_BIC

3 Build a Simple SAP HANA Native PersonsList Application

Preview

In Figure 3 you see architecture and content preview of the whole SAP HANA native PersonsList application
you will develop step-by-step within the following four main sections of the tutorial:

 Step 1: Create HANA XS application: how to create a new and minimalistic SAP HANA native
application using the SAP HANA Web-based Development Workbench.

 Step 2: Set up the persistence model: how to set up the persistence model for the PersonsList

application in the SAP HANA database including database schema creation, CDS-based table definition
and initial table load from a static pers.csv file.

 Step 3: Code the backend: how to build the application backend with SAP HANA extended application

services including OData service exposure for read and write access and a SQLScript procedure
createPerson() as modification exit for OData write requests. With this step your PersonsList application
implements the CR (=Create & Read)-functionality of a full CRUD-application (Create, Read, Update,
Delete).

 Step 4: Build the SAPUI5 frontend: how to build the application frontend with the UI development toolkit

for HTML5 (SAPUI5).

Figure 3: Architecture, artifacts and development steps of final SAP HANA native PersonsList application

http://www.saphana.com/docs/DOC-4372

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 18

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 19

3.1 Step 1: Create new SAP HANA native Application within Web IDE

Preview

Figure 4: Step 1 – initial creation of a bare bone SAP HANA native application

Design-Time Application Artifacts Created in this Step

File extension Object Description

Package A container in the SAP

HANA repository for

development objects.

Packages are represented by folders. The package that

contains the application-descriptor file becomes the root

path of the resources exposed by the application you

develop.

.xsapp SAP HANA XS application

descriptor

An application-specific file in a repository package that

defines the root folder of a native SAP HANA application. All

files in that package (and any sub packages) are available

to be called via URL.

.xsaccess SAP HANA XS application

access file

An application-specific configuration file that defines

permissions for a native SAP HANA application, for

example, to manage access to the application and running

objects in the package.

.xsprivileges SAP HANA XS

application- privilege file

A file that defines a privilege that can be assigned to an SAP

HANA Extended Application Services application, for

example, the right to start or administer the application.

index.html Default entry page Default entry (index) file with HTML markup to start SAP

HANA application in a web browser.

3.1.1 Create blank SAP HANA XS Application

To realize native applications on SAP HANA, the SAP HANA repository is used to manage the different

resources that altogether define the behavior and appearance of the application: either static content, libraries

like SAPUI5 control and runtime libraries or the defined application resources containing stored procedures,

table (entity) definitions, JavaScript-code and the like.

To create a new SAP HANA XS application inside the HANA repository we use the editor’s “Create

Application from Template” function that adds an initial application skeleton to a new package.

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 20

Prerequisites

 You have launched the SAP HANA Web-based Development Workbench Editor from the SAP HANA
Cloud Platform cockpit. If you are inactive for some time, your session in the SAP HANA Web-based
Development Workbench will become invalidated. To start a new session, go back to the SAP HANA
Cloud Platform cockpit and make sure your session is active there.

 Under root node Content the initial package structure /<trial-account-name>/<trial-instance-name>
e.g. Content/p1940394512trial/dev is displayed.

Hands-on Tasks

17. In the SAP HANA Repository tree select node item Content p1940xxtrial dev .

18. Open context menu on selected package dev and select item Create Application

19. In the “Create Application from Template” popup dialog enter sub-package name perslist.

20. In Template dropdown list select item Blank Application – (xsapp and xsaccess)

21. Press Create.

22. The system creates the files index.html, .xsaccess (HANA XS application access file),

and .xsapp (HANA XS application descriptor), and automatically opens the index.html file in a new

editor tab.

Result

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 21

As a result, the following SAP HANA application artifacts are created and listed under your newly added

package:

 application root package: New package Content/<trial account name>/<SAP HANA trial

instance>/perslist (here Content/p1940394512trial/dev/perslist) in SAP HANA repository that

comprises the initial application..

 .xsaccess: Expose your package content, meaning it can be accessed via HTTP, and assign access

controls, for example, to manage who can access content and how.

 .xsapp: Each application that you want to develop and deploy on SAP HANA extended application

services (SAP HANA XS) must have an application descriptor file. The application descriptor is the core

file that you use to describe an application's framework within SAP HANA XS.

 index.html: web page to start your application in a browser client. The index.html initially contains

only a page title and one paragraph. We will later replace it with content needed to run a SAPUI5

application frontend.

3.1.2 Run Blank SAP HANA XS Application in Web Browser

After having created the blank XS application under package p1940xxtrial/dev/perslist with the editor’s

template creation function we can run it in the web browser.

Hands-on Tasks

23. To test the blank application in the web browser, open your application package in the editor’s Content

tree: Content p1940xxtrial dev perslist index.html.

NOTE: The editor toolbar functions get automatically adapted to the selected item in the Content

tree. The toolbar button “Run on server (F8)” gets displayed for a selected index.html file to open

the application frontend in a browser window.

24. Press button “Run on server (F8)” to start the blank application in a web browser by requesting

the index.html file.

Result

The SAP HANA XS Web application frontend (with the index.html content) is displayed in the web

browser.

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 22

3.1.2.1 Application Descriptor .xsapp

Each SAP HANA native application must have an application descriptor file (a file without file name and

extension .xsapp). The application descriptor is the core file that is used to describe an application's

availability within SAP HANA extended application services. The package that contains the application

descriptor file becomes the root path of the resources exposed by the application. The file content must be

valid JSON for compatibility reasons (like {}) but does not have any content used for processing.

Terminology: JSON, or JavaScript Object Notation, is an open standard format that uses human-readable

text to transmit data objects consisting of attribute–value pairs. It is used primarily to transmit data between a
server and web application, as an alternative to XML.

3.1.3 Define Application Privileges in File .xsprivileges

In SAP HANA extended application services (SAP HANA XS), the application-privileges (.xsprivileges) file

can be used for access authorization in the .xsaccess file or checked programmatically to secure parts of an

XS application (examples: to start the application or to perform administrative actions on an application). It

does not have a name and is formatted according to JSON rules. Multiple .xsprivileges files are allowed, but

only at different levels in the package hierarchy.

Hands-on Tasks

25. In HANA Web IDE editor navigate to the SAP HANA Repository package Content p1940xxtrial

dev perslist and select package node perslist.

26. Choose context menu item Create File.

27. Enter .xsprivileges as filename (to replace the default string 0_NewFile.js highlighted in blue).

28. In the editor tab for file .xsprivileges paste the following content:

Source Code 1: .xsprivileges file to define the application privilege p1940xxtrial.dev.perslist::Execute

{
 "privileges": [{
 "name": "Execute",
 "description": "Basic usage privilege"
 }]
}

29. Save the .xsprivileges file with Ctrl+S or toolbar button Save to activate it.

Result

The new file with name .xsprivileges was created, saved and activated under package perslist.

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 23

Inside the .xsprivileges file, a privilege is defined by specifying an entry name with an optional description.

This entry name is then automatically prefixed with the package name to form the unique privilege name,

for example p1940xxtrial.dev.perslist::Execute.

3.1.4 Define Application Access in File .xsaccess

The .xsprivileges file lists the authorization levels that are available for access to an application package.

The application access file with name .xsaccess (suffix only) defines which authorization level is assigned

to which application package (i.e. what privileges are required to access content of a package and its sub-

packages). It also defines data (content) exposure to clients, defines the authentication method, specifies URL

rewrite rules and defines if SSL is required.

Similar to the .xsapp file, also the .xsaccess file is using the JSON format. .xsaccess files can be located in

the root package of the application or in any sub-package. When accessing the application via an URL, the

.xsaccess file in the sub-package or up the package hierarchy to the root package is used.

Hands-on Tasks

30. In SAP HANA repository tree select the application access file Content p1940xxtrial dev

perslist .xsaccess to edit it in a new editor tab.

31. In the editor tab for file .xsaccess replace the entire file content {"exposed" : true

,"authentication" : [{"method" : "Execute"}]} with Source Code 2:

NOTE: The copied source code contains the string p1940xxtrial to be replaced with your own trial
account name, e.g p1940394512trial.

Source Code 2: .xsaccess file to define application access permissions

{
 "exposed": true,
 "authentication": [{
 "method": "Basic"
 }],
 "authorization": ["p1940xxtrial.dev.perslist::Execute"]
}

32. Save the .xsaccess file with Ctrl+S or toolbar button Save to activate it.

Result

The authorization keyword in the .xsaccess file enables you to specify which authorization level is

required for access to a particular application package, e.g. to p1940xxtrial.dev.perslist. A user must now

have this privilege to access the application package where the .xsaccess file resides (see section 3.2.7

Grant Role user.hdbrole to Your User).

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 24

Read more: SAP HANA Developer Guide: The Application-Access File

3.2 Step 2: Set up the Persistence Model in SAP HANA Database

Preview

Figure 5: Step 2 - Backend part in SAP HANA database with CDS-based data persistence objects and initial load

Design-Time Application Artifacts created in this Step

File extension Object Description

.hdbdd CDS (Core Data

Services) data

definition document

A file containing a design-time definition of a CDS-compliant data-

persistence object (for example, an entity or a data type) using the

Data Definition Language (DDL).

.hdbprivilege Application Privilege A file that defines a privilege that can be assigned to a HANA XS

application, for example, the right to start or administer the

application.

.hdbrole Role A file containing a design-time definition of an SAP HANA user

role.

.hdbsequence Sequence A design-time definition of a database sequence, which is set of

unique numbers, for example, for use as primary keys for a

specific table.

.hdbti Table import

definition

A table-import configuration that specifies which .csv file is

imported into which table in the SAP HANA system

3.2.1 Create Sub-Package data

To logically structure content of our whole PersonsList application inside the SAP HANA repository we create

sub-packages for related artifacts under the application’s root package p1940xxtrial/dev/perslist. Files

related with the persistence model are stored in sub-package data that can easily be added within three

steps:

http://help.sap.com/saphelp_hanaplatform/helpdata/en/5f/e3b123826d4503aa66eb955a002821/content.htm

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 25

Hands-on Tasks

33. In the Editor’s repository content tree select package node Content p1940xxtrial dev perslist

34. Select context menu item Create Package. The newly created sub-package is named 0_NewPackage

by default.

35. Enter data as name of the new package

Result

The new sub-package with name data was created under package p1940xxtrial/dev/perslist:

SAP HANA repository: The SAP HANA repository is the central component of the SAP HANA development
infrastructure and an integral part of the SAP HANA system. The repository is used for central storage and
versioning of software artifacts, and it is also the foundation for lifecycle management for SAP HANA content
and for the translation of SAP HANA applications. The repository provides the export and import functions
needed for shipping applications to customers and for transporting development results between SAP HANA
systems.

The repository supports concurrent development in teams. As the central storage, it enables sharing of
development artifacts with other developers. The repository also supports concurrent development with
conflict resolution, for example by merging conflicting versions.

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 26

SAP HANA catalog: SAP HANA native applications persist their content in the SAP HANA repository and,

depending on the content type, compile artifacts into the runtime catalog.

Database schema: The SAP HANA database contains a catalog that describes the various elements in the

system. The catalog divides the database into sub-databases known as schema. A database schema enables
you to logically group together objects such as tables, views, and stored procedures. Without a defined

schema, you cannot write to the catalog.

3.2.2 Define Data Type Person within CDS Document

In the past, database objects could only be created via SQL directly in the database catalog. However this
meant they couldn’t be transported via delivery units like all other repository objects. As part of SAP HANA
native development, we now have tools named Core Data Services (CDS) to create database objects in SAP
HANA via a repository representation which generates the catalog objects upon activation.

To make up the data-persistence model for our application, we define a new model entity Person within a so-
called HANA data-persistence object definition file by using the CDS Data Definition Language.

Hands-on Tasks

36. Open the Editor tab of SAP HANA Web-based Development Workbench.

37. In the Editor’s repository content tree select package node Content p1940xxtrial dev perslist

 data

38. Select context menu item Create File and enter filename mymodel.hdbdd. The design-time object

definition that you create using the CDS-compliant syntax must have the file extension .hdbdd

39. Enter Source Code 3 to define the entity person. Also replace the highlighted string

corresponding to the name of your own trial account.

Source Code 3: Data definition file mymodel.hdbdd

namespace p1940xxtrial.dev.perslist.data;
@Schema: '_SYS_BIC'

context mymodel {
 type SString: String(60);

 @Catalog.tableType: #COLUMN

 Entity person {
 key ID: String(10); // element modifier 'key' defines that ID is primary key
 FIRSTNAME: SString;
 LASTNAME: SString;
 };
}

Screenshot 2: Activation of data definition file mymodel.hdbdd in SAP HANA repository

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 27

Result

The activation process implies to following functions:

 Syntax validation of data definition file mymodel.hdbdd

 Creation of table <namespace>::<context name>.<entity name>, in our case of table

p1940xxtrial.dev.perslist.data::mymodel.person, in database schema _SYS_BIC. In the next step

You open HANA database Catalog with the HANA Web IDE to display the person database table in

_SYS_BIC schema (see Screenshot 3).

NOTE: In your trial HANA account on SAP HANA Cloud Platform the existing database schema _SYS_BIC

is used to store your own database objects, so that you need not and even cannot create your own
database schema. In a SAP HANA instance on a productive SAP HANA Cloud Platform landscape you

would need to create an own database schema instead.

Core Data Services in a Nutshell

Core Data Services (CDS) enhance SQL to allow defining and consuming semantically rich data models
natively in HANA applications, thereby improving productivity, consumability, performance and interoperability.

As most databases, HANA supports SQL as the standard means to define, read and manipulate data. On top
of that, pretty much every consumer technology or toolset introduces higher-level models to add crucial
semantics and ease consumption – e.g. OData EDM models, the Semantic Layer in the BI platform, JPA and
enterprise objects in Java, or the business objects frameworks in ABAP. Also the River programming model
and RDL follow this pattern.

Even though those higher-level models share many commonalities, the individual information cannot be
shared across stacks. This leads to a fragmented environment and a high degree of redundancy and
overhead for application developers and customers. To address that, we introduce a common set of domain-
specific languages (DSL) and services for defining and consuming semantically rich data models as an
integral part of HANA – called Core Data Services --, that can hence be leveraged in any consuming stack
variant as depicted in the following illustration.

The Core Data Services comprise a family of domain-specific languages (highlighted in the illustration above)
which serve as a common core model for all stacks on top:

 Data Definition Language (DDL) to define semantically rich domain data models which can be further
enriched through Annotations.

 Database Query Language (DQL) to conveniently and efficiently read data based on data models as well
asto define views within data models.

 Data Manipulation Language (DML) to write data

 Data Control Language (DCL) to control access to data

 Expression Language (EL) to specify calculated fields, default values, constraints, etc. within queries as
well as for elements in data models.

Core Data Services focus on providing functional services independent of any programming language and
language paradigms. They don't specify nor make assumptions on how to add application logic and behavior
using general-purpose programming languages and services of application containers.
Further information:

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 28

 SAP HANA Developer Guide: Creating the Persistence Model in Core Data Services (CDS)

 SAP HANA Academy: SAP HANA SPS 6 - What's New: Development - Core Data Services, by Thomas
Jung

3.2.3 Display person Table in SAP HANA Database Catalog

For a customer/developer account on a productive SAP HANA Cloud Platform you now would need to create

a new database schema in the SAP HANA catalog. This database schema would enable you to create and

activate application artifacts such as tables and database procedures. Without a defined SAP HANA database

schema (in a SAP HANA instance on a productive SAP HANA Cloud Patform account), database objects

cannot be generated in the SAP HANA catalog upon activation of specific design-time artifacts that are added

to the SAP HANA repository.

In the SAP HANA database instance (e.g. named dev) of your trial SAP HANA Cloud Platform account the

existing SAP HANA schema _SYS_BIC is used for all your database objects so that you do not need to (and

even cannot) create an own database schema. To see the _SYS_BIC schema containing your ‘person’

database table (created via the ‘mymodel.hdbdd’) you have to execute a SQL command as follows.

Further Information: SAP HANA Cloud Platform Documentation > Specific Procedures and Views

Hands-on Tasks

40. To see the database schemas, that are visible in your trial account, open the SAP HANA catalog in a

new browser tab by pressing toolbar button More and selecting menu item Catalog.

41. Open a SQL console by clicking the toolbar icon Open New SQL Editor (blue SQL icon)

42. Copy the SQL code string from Source Code 4 into the opened SQL Editor:

Source Code 4: SQL call to view activated database objects in schema _SYS_BIC

CALL "HCP"."HCP_GRANT_SELECT_ON_ACTIVATED_OBJECTS"

43. Execute the SQL command by clicking the toolbar icon Execute (green icon with triangle).

http://help.sap.com/saphelp_hanaplatform/helpdata/en/b5/23afd66f5a40469573d9c47d7af831/content.htm?frameset=/en/b5/23afd66f5a40469573d9c47d7af831/frameset.htm¤t_toc=/en/34/29fc63a1de4cd6876ea211dc86ee54/plain.htm&node_id=98
http://www.saphana.com/docs/DOC-3773
https://help.hana.ondemand.com/help/frameset.htm?2cb80530a7a748f792050730782f9bef.html

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 29

44. Select the Catalog root node and choose context menu item Refresh to make the _SYS_BIC schema

visible in your catalog.

45. In the catalog tree expand the node Content _SYS_BIC Tables to display the newly created

person table as defined in CDS document mymodel.hdbdd. The person table is displayed with its fully

qualified name p1940394512trial.dev.perslist.data::mymodel.person.

Result

Your newly defined database table ‘person’ is displayed in the Tables node of the catalog schema

_SYS_BIC. The other nodes Functions, Procedures, Sequences, Triggers and Views are still empty and

will be partly filled in advance of the tutorial. The table metadata (with defined columns, schema name

_SYS_BIC, fully qualified table name) of your newly defined database table ‘person’ gets displayed in a

new catalog tab.

Screenshot 3: Automatic database table creation in SAP HANA catalog schema on activation of data definition

file mymodel.hdbdd

3.2.4 Load Mock Data from a .csv File into Database Table

For sake of simplicity we use a comma-separated-values file to populate the Person table with initial data

(initial load). Again this can easily be done by activating a pers.csv file together with a special HANA

database table import file we add to the sub-package data in the SAP HANA repository. On activation the

person table (p1940xxtrial.dev.perslist.data::mymodel.person) gets automatically filled with mock data that

is read from the csv file.

3.2.4.1 Add Mock Data File pers.csv to new sub-package loads

Hands-on Tasks

46. In Editor tab select repository package Content p1940xxtrial dev perslist data.

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 30

47. Create new sub-package loads with context menu item Create Package.

48. Select the newly created package loads and choose menu item Create File.

49. Enter pers.csv as file name.

50. Enter a list of three comma-separated person entries (see Source Code 5):

Source Code 5: pers.csv file to import mock data from a list of comma separated values

1,John,Smith
2,Lisa,Gordan
3,Mike,Miller

51. Save the pers.csv file.

Result

The pers.csv content for preloading later the persons table in the HANA catalog has been successfully

saved and activated.

3.2.4.2 Add Table Import Definition File pers.hdbti

Hands-on Tasks

52. Select package loads and choose menu item Create File.

53. Enter pers.hdbti file name to add a new table import definition.

54. Enter the import statement from Source Code 6 into the pers.hdbti file and replace the highlighted

strings with your own account name:

Source Code 6: pers.hdbti file to import table data from .csv file

import = [
{
 table = "p1940xxtrial.dev.perslist.data::mymodel.person";
 schema = "_SYS_BIC";
 file = "p1940xxtrial.dev.perslist.data.loads:pers.csv";
 header = false;
}];

55. Save the new pers.hdbti file.

56. Make sure that the editor returns a success message for activation of the new pers.hdbti file.

Otherwise the automatic data transfer (initial load) from the pers.csv file to new records in the Persons

database table will not be successfully processed.

Result

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 31

The pers.hdbti file which connects the preload content pers.csv file with the person table has been saved

and by activating it the preload content will be inserted into the person table.

What happens on Activation of SAP HANA Repository Content?

Figure 6 illustrates the generic functions applied by SAP HANA when a developer activates content in the
HANA Web IDE Editor. On activation of a repository file, the file suffix, for example, .hdbdd, is used to

determine which runtime plug-in to call during the activation process. The plug-in reads the repository file
selected for activation, in this case a CDS-compliant entity, parses the object descriptions in the file, and
creates the appropriate runtime objects.

Figure 6: Save and activate XS application content – what happens on SAP HANA Platform side?

 determine file type by extension: we have three files for data definition, table import and csv data

 validate content: content and dependencies of three files needed for the initial load into the person table

 create, update, delete runtime object in HANA catalog: person table gets filled with mock data

 report result messages to the developer in HANA Web IDE

3.2.4.3 Test Initial Load of Person Table Data in SAP HANA Catalog

The previously activated table import definition file pers.hdbti implies the automatic initial load of csv-file data

into the persons table (see Figure 6). To test whether the three initial Person records were successfully loaded
into the Persons table we open the catalog tool of the HANA Web IDE and execute a SELECT statement:

Hands-on Tasks

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 32

57. Switch to the SAP HANA: Catalog browser tab that you opened before in section 3.2.3. In case you

have closed the tab open it again by pressing the editor toolbar button More and selecting menu

item Catalog.

58. In the HANA catalog tree that gets displayed in a new browser tab select the Person table under node

Catalog _SYS_BIC Tables p1940xxtrial.dev.perslist.data::mymodel.person.

59. Select context menu item “Generate Select Statement”. The HANA Web IDE adds a new editor tab

with a SQL SELECT statement to read all records that are stored in the Persons table.

60. After successful initial load from the pers.csv file in the last step the SQL SELECT should return three

records. To execute the generated SQL STATEMENT press keyboard shortcut F8 or the execute

button in the catalog toolbar.

NOTE: You can also apply the “Open Content” context menu function to generate the SQL statement and

to view the result table in one single step (see section 3.5.4). For sake of better understanding we apply

two separate functions at the first time.

Result

As a result the Person table content with three records (loaded before) gets displayed underneath the

generated SQL select statement.

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 33

3.2.5 Add Database Sequence File to auto-generate Keys for new Records in

Persons Table

Hands-on Tasks

61. In the Editor’s repository content tree select package Content p1940xxtrial dev perslist

data.

62. Select context menu item Create File and enter filename pers.hdbsequence.

63. Enter Source Code 7 to define a database sequence and replace the highlighted string with your

own account name:

Source Code 7: Database sequence file pers.hdbsequence

schema= "_SYS_BIC";
start_with= 4;
maxvalue= 1000000000;
nomaxvalue=false;
minvalue= 4;
nominvalue=true;
cycles= false;
depends_on_table= "p1940xxtrial.dev.perslist.data::mymodel.person";

64. Save the new sequence file with Ctrl + S to activate it.

Result

The pers.hdbsequence file has been activated and will be used later to generate a serial list of unique

numbers of person entity IDs.

Terminology: Sequences

A sequence is a database object that generates an automatically incremented list of unique numbers
according to the rules defined in the sequence specification.

The sequence of numeric values is generated in an ascending or descending order at a defined increment
interval, and the numbers generated by a sequence can be used by applications, for example, to identify the
rows and columns of a table, to coordinate keys across multiple rows or tables.

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 34

Further information: SAP HANA Developer Guide: Create a Sequence

3.2.6 Define new Role in File user.hdbrole

Hands-on Tasks

65. In Editor tab select repository package Content p1940xxtrial dev perslist

66. Create new sub-package roles with context menu item Create Package.

67. Select the newly created package roles and choose menu item Create File.

68. Enter user.hdbrole as file name and press Enter.

69. In the opened editor tab of file user.role enter Source Code 8 to and replace the highlighted string

with your own account name:

Source Code 8: Role definition file user.hdbrole

role p1940xxtrial.dev.perslist.roles::user {
 sql object p1940xxtrial.dev.perslist.data::mymodel.person: SELECT, INSERT, UPDATE,
DELETE;
 application privilege: p1940xxtrial.dev.perslist::Execute;
}

NOTE: Know the code

 Define a (database) object privilege for the underlying design-time object person (this entity was

defined in CDS document mymodel.hdbdd) using the keyword sql object as follows: sql object
<package>:<object>.extension: PRIVILEGE;. Privileges on the same object may be comma-
separated or split up in several lines.

 Define an application privilege with keyword application privilege in code line application
privilege: p1940xxtrial.dev.perslist::Execute;. This makes the privilege “Execute” (defined
in repository file .xsprivileges) to an application privilege at runtime. Remember, that application

privileges define the authorization level required for access to an SAP HANA XS application, for

example, to start the application or view particular functions and screens.

70. Save the new role definition file to activate it.

Result

The content of the file user.hdbrole has been successfully saved and activated. When a user accesses the

SAP HANA database using a client interface (for example, ODBC, JDBC, or like in our case HTTP), his or

her ability to perform database operations on database objects is determined by the privileges that he or

she has been granted. In our case the defined “Execute” privilege is assigned to the role user.hdbrole as a

privilege of type “application privilege”.

Further Information: SAP HANA Developer Guide: User Roles, Object Privileges, Application Privileges

3.2.7 Grant Role user.hdbrole to Your User

In the next step the new role user.hdbrole gets granted to your account user P1940XX (technically to your

HANA database user DEV_XX) by calling the HANA database procedure HCP_GRANT_ROLE_TO_USER() in

catalog schema HCP. Figure 7 depicts the dependencies between application access file, application

privilege, user role definition and role-to-user assignment.

See Figure 7 on next page …

1

2

1

2

http://help.sap.com/saphelp_hanaplatform/helpdata/en/a1/e95af655ee4e00bd9183518d1fa5c5/content.htm?frameset=/en/a1/e95af655ee4e00bd9183518d1fa5c5/frameset.htm¤t_toc=/en/34/29fc63a1de4cd6876ea211dc86ee54/plain.htm&node_id=133
http://help.sap.com/saphelp_hanaplatform/helpdata/en/a1/e95af655ee4e00bd9183518d1fa5c5/content.htm?frameset=/en/a1/e95af655ee4e00bd9183518d1fa5c5/frameset.htm¤t_toc=/en/34/29fc63a1de4cd6876ea211dc86ee54/plain.htm&node_id=133
http://help.sap.com/saphelp_hanaplatform/helpdata/en/42/1691c7c0514928b3f15030600ef964/content.htm?frameset=/en/42/1691c7c0514928b3f15030600ef964/frameset.htm¤t_toc=/en/34/29fc63a1de4cd6876ea211dc86ee54/plain.htm&node_id=2
http://help.sap.com/saphelp_hanaplatform/helpdata/en/98/ef3296483246b69bdf49e3d8f0ac0a/content.htm?frameset=/en/e7/f358b6e85b4610a2b62c5a25755fc0/frameset.htm¤t_toc=/en/34/29fc63a1de4cd6876ea211dc86ee54/plain.htm&node_id=422
http://help.sap.com/saphelp_hanaplatform/helpdata/en/d5/3bed251afb492b85da48aeecbf331a/content.htm?frameset=/en/9a/b0b327addd411ab6eadeba205a889e/frameset.htm¤t_toc=/en/34/29fc63a1de4cd6876ea211dc86ee54/plain.htm&node_id=429
http://help.sap.com/saphelp_hanaplatform/helpdata/en/4d/6ed4dc3db6423abd9f9a52a626618f/content.htm?frameset=/en/9a/b0b327addd411ab6eadeba205a889e/frameset.htm¤t_toc=/en/34/29fc63a1de4cd6876ea211dc86ee54/plain.htm&node_id=440

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 35

Figure 7: How the definition of application access, application privilege, user role and role assignment fit together

 In the application access file .xsaccess (1) we authorized the application privilege named “Execute” to
access the application content (of package p1940xxtrial.dev.perslist and its sub-packages).

 The application privilege “Execute” is defined in the .xsprivilege file (2).

 The assignment of the “Execute” application privilege to the end user who calls or executes the PersList
application is based on two parts, a role definition and a role grant to an end user (developer). After

adding the code line application privilege: p1940xxtrial.dev.perslist::Execute; to the role

definition user.hdbrole (3) we call the HANA database procedure HCP_GRANT_ROLE_TO_USER in the
HANA catalog schema „HCP“, so that the user.hdbrole gets granted to the account user/developer (4).

NOTE: The privilege name is not pre-defined by SAP HANA but can be freely chosen by the developer. The
privilege type that is associated with a privilege at runtime is defined in the assignment of the application

privilege to a user (with procedure GRANT_APPLICATION_PRIVILEGE) or to a user role (with procedure

HCP_GRANT_ROLE_TO_USER). In the role definition file user user.hdbrole it is the privilege type name

application privilege in code line application privilege:
p1940xxtrial.dev.perslist::Execute; that makes the design-time privilege “Execute” to an application
privilege at runtime.

Further Information: SAP HANA Developer Guide: Grant Privileges to Users,

SAP HANA Cloud Platform Doc > Specific Procedures and Views: HCP_GRANT_ROLE_TO_USER()

Hands-on Tasks

71. Select the already opened Catalog browser tab. If not, press toolbar button More (green plus icon) in

the HANA Web IDE Editor tab and select menu item Catalog.

72. The HANA catalog tree gets displayed in a new browser tab. Under tree node Catalog > HCP expand

the three sub-nodes Procedures to display the generic HANA database procedure

HCP_GRANT_ROLE_TO_USER.

73. Copy the SQL code string from Source Code 9 into the opened SQL editor. Replace the highlighted

string corresponding to the name of your own trial account and user name.

Source Code 9: Call SQL procedure HCP.HCP_GRANT_ROLE_TO_USER() to grant role user.hdbrole to your
user

http://help.sap.com/saphelp_hanaplatform/helpdata/en/e4/87d388ba4045df982bff78103d6852/content.htm?frameset=/en/9a/b0b327addd411ab6eadeba205a889e/frameset.htm¤t_toc=/en/34/29fc63a1de4cd6876ea211dc86ee54/plain.htm&node_id=441
https://help.hana.ondemand.com/help/frameset.htm?2cb80530a7a748f792050730782f9bef.html

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 36

call HCP.HCP_GRANT_ROLE_TO_USER('p1940xxtrial.dev.perslist.roles::user','p1940xx')

74. Execute the SQL command by clicking the toolbar icon Execute (green icon with triangle).

Result

The content of the file user.hdbrole has been successfully saved and activated:

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 37

3.3 Step 3: Build the Application Backend with SAP HANA Extended

Application Services

In the next step we implement the backend logic of the PersonsList application by using SAP HANA extended
application services:

 OData service: exposes the Persons table in the SAP HANA database for read and write access by

means of an OData service that can be consumed by the SAPUI5 application frontend.

 HANA database procedure: SQL Script implementation that is registered as modification exit for an

OData CREATE operation (for entity Person).

 User role (modified): enable users (with this role) to perform actions on database objects that are

needed for write access to the Persons table.

Preview

Figure 8: Step 3 - application backend part with OData service and HANA database procedure for read/write logic

Design-Time Application Artifacts Created in this Step

File extension Object Description

.hdbprocedure Procedure A design-time definition of a database function for

performing complex and data-intensive business logic

that cannot be performed with standard SQL.

.xsodata OData descriptor A design-time object that defines an OData service

that exposes SAP HANA data from a specified end

point.

3.3.1 Expose the Person Database Entity by means of OData Service

SAP HANA extended application services provide a special tool for the creation of OData services (for web-

based data access) without needing to perform server side coding. To create an OData service from an

existing HANA table or view, we need only define a service definition file with suffix .xsodata.

Prerequisites

 Select privileges must be granted to the table to be exposed with the OData service.

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 38

Hands-on Tasks

3.3.1.1 Add new Sub-Package ‘services’ for OData Service Definition

To keep repository files together that are related with the application’s OData services we add them to a

new sub-package named services:

75. In editor tab select repository package Content p1940xxtrial dev perslist.

76. Create new sub-package services with context menu item Create Package.

3.3.1.2 Create a Simple OData Service within OData Descriptor .xsodata

We want to define an OData service to expose the persons table by adding a corresponding .xsodata

service descriptor file to the HANA repository. The syntax of the XSOData service is relative easy for this

use case. We need only define …

 a namespace: our package path (your package path),

 the name of the SAP HANA table we will base the service from

(p1940xxtrial.dev.perslist.data::mymodel.person)

 and the name of the OData entity (Persons).

77. Under new sub-package services add new file pers.xsodata.

78. Add the following code to the pers.xsodata file and replace the highlighted string with your own

account name:

Source Code 10: OData service definition file pers.xsodata for service consumption of entity Person

service {
 "p1940xxtrial.dev.perslist.data::mymodel.person" as "Persons";
}

79. Save the new XS-OData service descriptor.

Result

On activation of the

pers.xsodata

repository file (Figure 9,

arrow 1), the file suffix,

xsodata is used to

determine which

runtime plug-in to call

during the activation

process. The plug-in

reads the repository file

selected for activation,

sees the object

descriptions in the file,

and creates the

appropriate runtime

objects, in our case the

Persons OData service

producer in the

application backend

((Figure 9, arrow 2).

Figure 9: OData service creation based on new OData service definition file inside
HANA repository

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 39

3.3.1.3 Consume and View the new XS OData Service inside Web Browser

In the next step we will consume the new Persons OData service by accessing the provided data in a web

browser using standard HTTP. We will …

 view all resources that are exposed by the Persons OData service by requesting its root URI in a browser
client.

 learn about the data model used by the Persons OData service by issuing a GET on the service's root
URI with "/$metadata" appended to it.

 query the Persons table data in a browser client. To do so we issue a GET request on the corresponding
OData service URI.

Prerequisites

 The repository file pers.xsodata that defines the Persons OData service in the HANA repository is

successfully activated (visualized by icon , whereas inactive/invalid repository files are marked with

icon).

Hands-on Tasks

80. In the SAP HANA Web IDE Editor select the pers.xsodata file inside package

Content/p1940xxtrial/dev/perslist/services.

81. In the toolbar click icon Run on server (green icon with triangle) to request the person OData

service in new browser tab. The addressed URI returns the list of resources exposed by the Persons

OData service. In our simple example it is just a collection of Persons:

NOTE: When requesting the OData based URL in the JSON representation via URL parameter

format=json

http://...perslist/services/pers.xsodata?$format=json the response looks very simple. One
“data” object (named “d”) with a single name/value pair with the name equal to “EntitySets” and the value

being an array of Collection names: { "d": { "EntitySets": ["Persons"] } }.

82. Add to the browser URL the following string /Persons?$format=xml and press the Refresh button

(or keyboard shortcut F5).

An example of the response returned for the Persons query is shown below. In the below screenshot

you see the first Persons record John Smith from all three records that were initially loaded from csv-

http://...personslist/services/persons.xsodata?$format=json

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 40

file into the Persons table on the HANA database.

Result

The Person database entity was successfully exposed as OData service by means of SAP HANA

extended applications services. It can be consumed on application frontend side to list persons in a HTML5

table UI that is bound to a SAPUI5 OData model as the corresponding OData service consumer.

3.3.2 Implement Application Logic to Write new Records into Persons Table

SAP HANA XS enables you to execute custom code at defined points of an OData write request. If you

provide a custom exit for an OData write request, the code has to be provided in form of a SQLScript

procedure with signatures that follow specific conventions. SAP HANA XS supports two types of write exits

for OData write requests:

 Validation exits for validation of input data and data consistency checks.

 Modification exits to create, update or delete an entry in an OData entry set.

3.3.2.1 Add CDS User-Defined Datatypes to be used in SQLScript Procedure

Hands-on Tasks

83. In the Editor browser tab (of SAP HANA Web-based Development Workbench) select the inner editor

tab for the mymodel.hdbdd file. In case you closed it before click on the repository content node

Content p1940xxtrial dev perslist data mymodel.hdbdd to open the editor tab.

84. Add the highlighted code with new context “procedures” and new CDS user-defined datatypes

pers and errors to the CDS data definition file mymodel.hdbdd.

Copy Source Code 11 from next page …

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 41

Source Code 11: New context ‘procedures’ with CDS-user-defined datatypes pers and errors in CDS Data
Definition File mymodel.hdbdd

namespace p1940xxtrial.dev.perslist.data;
@Schema: '_SYS_BIC'

context mymodel {
 type SString: String(60);

 @Catalog.tableType: #COLUMN

 Entity person {
 key ID: String(10); // element modifier 'key' defines that ID is primary key
 FIRSTNAME: SString;
 LASTNAME: SString;
 };

 context procedures{
 type pers {
 ID: String(10);
 FIRSTNAME: SString;
 LASTNAME: SString;
 };
 type errors {
 HTTP_STATUS_CODE : Integer;
 ERROR_MESSAGE : String(100);
 DETAIL : String(100);
 };
 };
};

85. Save the newly edited data definition file mymodel.hdbdd and take care that it gets activated

successfully.

Result

The new datatypes pers and errors can be used as parameter types in SQLScript procedure

createPerson.hdbprocedure that gets implemented in the next hands-on task.

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 42

3.3.2.2 Implement Modification Exit in SQLScript Procedure to add new Records in Persons

Table

Create a new SQLScript procedure that runs as modification exit before the create event in the OData service.

Hands-on Tasks

86. In editor tab select repository package Content p1940xxtrial dev perslist

87. Create new sub-package procedures with context menu item Create Package

88. Under new sub-package procedures add new file createPerson.hdbprocedure

89. Copy Source Code 12 with the procedure logic to insert new records into the Persons table:

Source Code 12: SQLScript procedure createPerson.hdbprocedure to insert table records (via modification exit

for OData service)

PROCEDURE
 "_SYS_BIC"."p1940xxtrial.dev.perslist.procedures::createPerson" (
 IN intab "_SYS_BIC"."p1940xxtrial.dev.perslist.data::mymodel.procedures.pers",
 OUT outtab "_SYS_BIC"."p1940xxtrial.dev.perslist.data::mymodel.procedures.errors"
)
 LANGUAGE SQLSCRIPT
 SQL SECURITY INVOKER AS
 --DEFAULT SCHEMA <schema>
 --READS SQL DATA AS
begin

declare lv_pers_no string;
declare lv_firstname string;
declare lv_lastname string;

select ID, FIRSTNAME, LASTNAME into lv_pers_no, lv_firstname, lv_lastname from :intab;

if :lv_lastname = '' then
 outtab = select 500 as http_status_code,
 'Invalid last name ' || lv_firstname as error_message,
 'No Way! Last name field must not be empty' as detail from dummy;
else
 insert into "p1940xxtrial.dev.perslist.data::mymodel.person"
 values ("p1940xxtrial.dev.perslist.data::pers".NEXTVAL, lv_firstname, lv_lastname);
end if;

1

2

3

4

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 43

end;

NOTE: Know the code

 Fully qualified name of SQLScript procedure createPerson starts with schema name "_SYS_BIC"
followed by repository package name "p1940xxtrial.dev.perslist.procedures".

 Reference to fully qualified types pers and error defined in CDS file mymodel.hdbd (with
"::mymodel" = context name, ".procedures" = inner context name, see Source Code 11).

 Reference to entity "p1940xxtrial.dev.perslist.data::mymodel.person" defined in CDS file
mymodel.hdbd.

 Reference to database sequence "p1940xxtrial.dev.perslist.data::pers" defined in file
pers.hdbsequence, see Source Code 7.

90. To replace the corresponding user string p1940xxtrial (that is part of the namespaces and the

schema to reference HANA objects in the procedure) make use of search and replace function in the

HANA Web IDE as follows:

In the editor tab createPerson.hdbprocedure proceed as follows

 Mark string p1940xxtrial.

 Press keyboard shortcut Ctrl+H so that the search & replace dialog opens in the upper right corner

of the editor.

 The first input field contains the selected string p1940xxtrial. Enter your trial account name e.g.

p1940394512trial into the second input field.

 Press Aa button to assure case sensitive search (all matching strings get highlighted with blue

rectangles)

 Press >> button to replace all occurrences of the search string p1940xxtrial.

 Close the popup dialog.

The table and error type objects you created in the previous steps are used as types in the procedure

created here. The procedure also performs verification on the data and inserts a new row with error

information into the output table (Persons).

91. Save the new SQLScript procedure to activate it.

Result

All strings p1940xxtrial are replaced with correct user names and the HANA database procedure

createPerson.hdbprocedure is activated in the repository.

1

2

4

3

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 44

3.3.2.3 Register a Modification Exit for OData Write Requests

Register the new SQLScript procedure createPerson.hdbprocedure in the OData service pers.xsodata to

be executed at the CREATE event.

Hands-on Tasks

92. Open the pers.xsodata file in the editor and use the create using keywords to register the new

HANA database procedure, as illustrated with the new line create using … in the OData service file.

Source Code 13: Add modification exit to call SQLScript procedure createPerson.hdbprocedure in OData

service

service {
 "p1940xxtrial.dev.perslist.data::mymodel.person" as "Persons"
 create using "p1940xxtrial.dev.perslist.procedures::createPerson";
}

93. Remove the semi-colon at the end of the existing code line the service definition file.

94. Then copy the bold marked line create using … and paste into the pers.xsodata file before the

closing curly bracket.

95. In the new codeline replace p1940xxtrial with your user name.

96. Save pers.xsodata so that it is activated with the additional code line.

Result

By this the OData service can invoke the HANA database procedure createPerson.hdbprocedure during

the CREATE event.

3.3.3 Modify Role Definition in File user.hdbrole and Synchronize Roles

Hands-on Tasks

97. Open the user.hdbrole file in repository package p1940xxtrial/dev/perslist/roles.

98. In the opened editor tab of file user.role modify Source Code 8 by adding two object privileges to

execute the newly created SQLScript procedure createPerson.hdbprocedure (1) and to select

entries from the database sequence table defined in repository file pers.hdbsequence (2). Replace the

highlighted string with your own account name:

Source Code 14: Role definition file user.hdbrole

role p1940xxtrial.dev.perslist.roles::user {
 sql object p1940xxtrial.dev.perslist.data::mymodel.person: SELECT, INSERT, UPDATE,
DELETE;

 sql object p1940xxtrial.dev.perslist.procedures::createPerson: EXECUTE;
 sql object p1940xxtrial.dev.perslist.data:pers.hdbsequence: SELECT;

 application privilege: p1940xxtrial.dev.perslist::Execute;

add this code line

1

2

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 45

}

NOTE:

Object privileges on the design-time (repository) objects views, procedures and others are defined using

the keyword sql object as follows: sql object <package>:<object>.extension: PRIVILEGE;.

Object privileges on the catalog objects are defined using the keyword catalog SQL object as follows:

catalog sql object "SCHEMA"."CATALOG_OBJECT": PRIVILEGE; For security reasons, system
privileges, object privileges on schema level and package privileges are not allowed to be granted to
activated hdbroles when using a Trial SAP HANA instance.

99. Save pers.xsodata and check whether the user.hdbrole file gets activated successfully.

100. Switch to the SAP HANA: Catalog browser tab that you opened before in section 3.2.3. In case you

have closed the tab open it again by pressing the editor toolbar button More and selecting menu

item Catalog.

101. Open a SQL console by clicking the toolbar icon Open New SQL Editor (blue SQL icon).

102. Copy the SQL code string from Source Code 4 into the opened SQL Editor:

Source Code 15: SQL procedure call HCP_SYNCHRONIZE_ROLES() to synchronize the developer's role with

the activated hdbroles from the developer's package

CALL "HCP"."HCP_SYNCHRONIZE_ROLES"

103. Execute the SQL command by clicking the toolbar icon Execute (green icon with triangle).

Result

The content of file user.hdbrole has been successfully saved and activated. By calling the SQL procedure

HCP_SYNCHRONIZE_ROLES() provided in schema HCP the developer's role (i.e. your user role) privileges

are updated with the privileges from the activated user.hdbrole file. All users with assigned role

user.hdbrole are now privileged to write new person entries back to the person table by means of the

SQLScript procedure (modification exit) createPerson.hdbprocedure and the database sequence

pers.hdbsequence.

Further Information:

 SAP HANA Developer Guide: Object Privileges

 SAP HANA Cloud Platform Doc > Specific Procedures and Views: HCP_SYNCHRONIZE_ROLES()

3.3.4 View the Application Backend in SAP HANA Catalog

Hands-on Tasks

http://help.sap.com/saphelp_hanaplatform/helpdata/en/d5/3bed251afb492b85da48aeecbf331a/content.htm?frameset=/en/9a/b0b327addd411ab6eadeba205a889e/frameset.htm¤t_toc=/en/34/29fc63a1de4cd6876ea211dc86ee54/plain.htm&node_id=429
https://help.hana.ondemand.com/help/frameset.htm?2cb80530a7a748f792050730782f9bef.html

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 46

104. Select the already opened Catalog browser tab. If
not, press toolbar button More and select menu item
Catalog.

105. The HANA catalog tree gets displayed in a new browser tab. Under tree node Catalog > _SYS_BIC

(= database schema where the runtime artifacts of your PersonsList application reside) for expand the

three sub-nodes Procedures, Sequences and Tables.

Result

In database schema _SYS_BIC you see the SAP HANA runtime artifacts that were automatically added to

the SAP HANA catalog based on the corresponding design-time artifacts you added before in the SAP

HANA repository:

 Repository content Catalog content

CDS-based data definition file
p1940xxtrial/dev/perslist/data/
mymodel.hdbdd

_SYS_BIC/Tables/
p1940xxtrial.dev.perslist.data::mymodel.person

Sequence definition file
p1940xxtrial/dev/perslist/data/
pers.hdbsequence

_SYS_BIC/Sequences/
p1940xxtrial.dev.perslist.data::pers

SAP HANA database procedure file
p1940xxtrial/dev/perslist/
procedures/createPerson.hdbprocedure

_SYS_BIC/Tables/
p1940xxtrial.dev.perslist.procedures::createPerson

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 47

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 48

3.4 Step 4: Build the Application Frontend with SAPUI5

After having fully implemented the application backend you build the application frontend on top by using the
UI development toolkit for HTML5 (aka SAPUI5).

Preview

Figure 10: Step 4 - application frontend part with SAPUI5 view UI, controller and OData consumption

Design-Time Application Artifacts Created in this Step

File extension Object Description

index.html SAPUI5 application entry page HTML file containing bootstrap script (to load SAPUI5

libraries and theme at the client), application script (to load

the application’s view layout and controller logic) and html

body (to embed views).

.view.js SAPUI5 JavaScript view

(JSView)

A SAPUI5 view flavor that allows you to use JavaScript (JS)

code to construct a view.

.controller.js SAPUI5 JavaScript controller A SAPUI5 application unit containing the active part of the

application. It is the logical interface between a model and a

view, corresponding to the model view controller (MVC)

concept. A controller reacts to view events and user

interaction by modifying view and model.

3.4.1 Create Package Structure for SAPUI5 Application Content

Hands-on Tasks

106. In editor tab select repository package Content p1940xxtrial dev perslist

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 49

107. Create new sub-packages ui, perslist-web and views by choosing context menu item Create

Package

108. Enter ui.perslist-web.views and press RETURN.

Result

The SAPUI5 application sources that are

implemented in the next step can be added to the

newly created subfolders /ui/perslist-web (for

index.hmtl) and ui/perslist-web/views (for view.js

and controller.js).

3.4.2 Design and Implement Application UI in SAPUI5 JavaScriptView

Prototype a User Interface

Before we implement the new JavaScriptView in SAPUI5 let’s first have a look at the simple user interface
with its control tree.

Figure 11: User interface sketch diagram with Persons entry form and table control

User Interaction Should Look Like This

1. User enters a person's first name and last name in the TextEdit controls with the TableToolbar.

2. User then clicks the Add Person Button (the persons data is submitted to the controller which adds it to the

OData model) in the TableToolbar.

3. Entered person name is taken from the model and displayed in a table control.

Further information: SAPUI5 Demo Kit - Control Gallery

Hands-on Tasks

109. Select package p1940xxtrial/dev/perslist/ui/perslist-web/views and choose context menu item

Create File

https://sapui5.netweaver.ondemand.com/sdk/#content/Controls/index.html

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 50

110. Enter new file name perslist.view.js (UI5 JavaScriptView for the view layout implementation)

111. Copy Source Code 16 into the perslist.view.js editor:

Source Code 16: SAPUI5 application UI implemented in JavaScriptView file perslist.view.js

sap.ui.jsview("views.perslist", {

 oFirstNameField : null,
 oLastNameField : null,

 getControllerName : function() {
 return "views.perslist";
 },

 createContent : function(oController) { // Create an instance of the table control
 var oTable = new sap.ui.table.Table({ title : "Persons List", visibleRowCount : 6,
 firstVisibleRow : 3, selectionMode : sap.ui.table.SelectionMode.Single, });

 // add TableToolbar
 var oTableToolbar = new sap.ui.commons.Toolbar();

 // add first name field
 var oFirstNameLabel = new sap.ui.commons.Label({ text : 'First Name' });
 this.oFirstNameField = new sap.ui.commons.TextField({ id : 'firstNameFieldId', value : '',
 width : '10em', });
 oFirstNameLabel.setLabelFor(this.oFirstNameField);
 oTableToolbar.addItem(oFirstNameLabel);
 oTableToolbar.addItem(this.oFirstNameField);

 // add last name field
 var oLastNameLabel = new sap.ui.commons.Label({ text : 'Last Name' });
 this.oLastNameField = new sap.ui.commons.TextField({ id : 'lastNameFieldId', value : '',
 width : '10em', });
 oLastNameLabel.setLabelFor(this.oLastNameField);
 oTableToolbar.addItem(oLastNameLabel);
 oTableToolbar.addItem(this.oLastNameField);

 // add button
 var oAddPersonButton = new sap.ui.commons.Button({ id : 'addPersonButtonId',
 text : "Add Person", press : function() {
 oController.addNewPerson();
 } });
 oTableToolbar.addItem(oAddPersonButton);
 oTable.setToolbar(oTableToolbar);

 // define the columns and the control templates to be used
 oTable.addColumn(new sap.ui.table.Column({
 label : new sap.ui.commons.Label({ text : "First Name" }),
 template : new sap.ui.commons.TextView().bindProperty("text", "FIRSTNAME"),
 sortProperty : "FIRSTNAME", filterProperty : "FIRSTNAME", width : "100px" }));
 oTable.addColumn(new sap.ui.table.Column({
 label : new sap.ui.commons.Label({ text : "Last Name" }),
 template : new sap.ui.commons.TextView().bindProperty("text", "LASTNAME"),
 sortProperty : "LASTNAME", filterProperty : "LASTNAME", width : "200px" }));

 // bind table rows to /Persons based on the model defined in the init method of the
 // controller (aggregation binding)
 oTable.bindRows("/Persons");

 return oTable;
 },

 getFirstNameField : function() {
 return this.oFirstNameField;
 },

 getLastNameField : function() {
 return this.oLastNameField;
 },

2

1

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 51

});

NOTE: Know the code

 Property binding: add new Column control to the table and bind the TextView control property
"text" to the OData model property "FIRSTNAME".

 Aggregation binding: aggregation binding is used to bind a collection of table rows with data from the

OData model to the table. The absolute binding path "/Persons" points to the entity set with name

"Persons" defined in our XSOData service. The binding paths in an OData model reflect the structure

of the OData service as exposed through the $metadata of the service.

NOTE: How to Format Code within HANA Web IDE

After you copied the file into the created perslist.view.js editor of the HANA Web IDE, content is not

formatted because copied .pdf-content in general cannot do this. To format source code inside the HANA

Web IDE press button “Format code” in the toolbar:

INFO: The “Format code” feature of the HANA Web IDE so far only works for .js , .xsjs and .xsjslib

(where the last two file types are not explained in the tutorial).

112. Save the perslist.view.js file with Ctrl+S or toolbar button Save to activate it.

Result

The SAPUI5 JSView perslist.view.js defining the UI controls of the PersonsList application has been

created.

Further information:

 SAPUI5 Demo Kit - Control Gallery - Application Header, Table Example (apply “Show Source Code”
function and SAPUI5 Demo Kit - Control Gallery – Introduction to Data Binding

3.4.3 Create SAPUI5 View Controller with SAPUI5 OData Model

Hands-on Tasks

113. Select package p1940xxtrial/dev/perslist/ui/perslist-web/views and choose context menu item

Create File.

114. Enter new file name perslist.controller.js (view controller logic implemented in JavaScript).

1

2

https://sapui5.netweaver.ondemand.com/sdk/#test-resources/sap/ui/commons/demokit/ApplicationHeader.html
https://sapui5.netweaver.ondemand.com/sdk/#test-resources/sap/ui/table/demokit/Table.html
https://sapui5.netweaver.ondemand.com/sdk/#docs/guide/Introduction.1.html

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 52

115. Copy Source Code 17 into the perslist.controller.js editor. Replace the highlighted string with

your own account name:

Source Code 17: SAPUI5 view controller JS file to call OData service exposed by pers.xsodata file

sap.ui.controller("views.perslist", {

 onInit : function() {
 var sOrigin = window.location.protocol + "//" + window.location.hostname
 + (window.location.port ? ":" + window.location.port : "");
 var persListOdataServiceUrl = sOrigin
 + "/p1940xxtrial/dev/perslist/services/pers.xsodata";
 var odataModel = new sap.ui.model.odata.ODataModel(persListOdataServiceUrl);
 this.getView().setModel(odataModel);
 },

 addNewPerson : function() {
 var firstName = this.getView().getFirstNameField().getValue();
 var lastName = this.getView().getLastNameField().getValue();

 var persons = {};
 persons.ID = "1";
 persons.FIRSTNAME = firstName;
 persons.LASTNAME = lastName;
 this.getView().getModel()
 .create("/Persons", persons, null, this.successMsg, this.errorMsg);
 },

 successMsg : function() {
 sap.ui.commons.MessageBox.alert("Person entity has been successfully created");
 },

 errorMsg : function() {
 sap.ui.commons.MessageBox.alert("Error occured when creating person entity");
 },

 onAfterRendering : function() {
 this.getView().getFirstNameField().focus(); }
});

116. Replace string p1940xxtrial with your own user name.

117. Save the perslist.controller.js file with Ctrl+S or toolbar button Save.

NOTE: Know the code

 Generate absolute URL of OData service pers.xsodata added in section 3.3.1.

 OData model instance creation: to use data binding in a SAPUI5 applications we instantiate the

OData model first. The constructor takes the URL of the model data or the data itself as the first
parameter.

 OData model instance assignment to view controller "views.perslist" for data binding in the
view’s UI elements.

 OData model write access to create a new Person records.

 After rendering of the view layout the initial focus is set to the first input field so that the user can start

typing.

Result
The SAPUI5 controller perslist.controller.js has been created and enables the control logic between the

client side SAPUI5 OData model and the HANA backend according to some UI interaction (button click).

Further information:

 SAPUI5 SAPUI5 Demo Kit - Developer Guide - The Model-View-Controller Approach

 SAPUI5 Demo Kit - Developer Guide - OData Model

1

2

3

4

5

1

2

3

4

5

http://help.sap.com/hana_platform#section6
https://sapui5.netweaver.ondemand.com/sdk/#docs/guide/MVC.html
https://sapui5.netweaver.ondemand.com/sdk/%23docs/guide/ODataModel.html

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 53

3.4.4 Implement index.html file with the SAPUI5 Application Bootstrap and Content

Hands-on Tasks

118. We reuse the index.html file of our initially created blank HANA XS application to define the entry

point for our SAPUI5 PersonsList application UI.

119. Select the index.html file under package p1940xxtrial/dev/perslist and move it to the package

location p1940xxtrial/dev/perslist/ui/perslist-web using drag & drop:

120. After the drag & drop operation the index.html editor is opened. In the editor tab remove the entire

content and replace it with Source Code 18:

Copy Source Code 18 from next page …

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 54

Source Code 18: index.html with SAPUI5 application bootstrap and html content

<!DOCTYPE HTML>
<html>
<head>
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<title>SAP HANA Cloud E2E Dev Scenario: SAP HANA native
 PersonsList application</title>
<script src="/sap/ui5/1/resources/sap-ui-core.js" id="sap-ui-bootstrap"
 data-sap-ui-libs="sap.ui.commons, sap.ui.table,sap.ui.ux3"
 data-sap-ui-theme="sap_bluecrystal">
</script>

<script>
 sap.ui.localResources("views");

 var oAppHeader = new sap.ui.commons.ApplicationHeader("appHeader");
 oAppHeader.setLogoSrc("http://www.sap.com/global/images/SAPLogo.gif");
 oAppHeader.setLogoText("SAP HANA Cloud Platform e2e scenario:"
 + "PersonsList application in SAP HANA XS");
 oAppHeader.setDisplayWelcome(false);
 oAppHeader.setDisplayLogoff(false);
 oAppHeader.placeAt("header");

 var view = sap.ui.view({ id : "perslist-id", viewName : "views.perslist",
 type : sap.ui.core.mvc.ViewType.JS });
 view.placeAt("content");
</script>

</head>
<body class="sapUiBody" role="application">
 <div id="header"></div>
 <div id="content"></div>
</body>
</html>

121. Save index.html to activate it.

Result

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 55

The SAP HANA native PersonsList application is now fully implemented and can be launched and tested in

a new browser tab.

Further information:

 SAPUI5 Demo Kit - Developer Guide - SAPUI5 HelloWorld

 SAPUI5 Demo Kit - Developer Guide - Bootstrapping

3.5 Run and Test the Final PersonsList Application

3.5.1 Recap: Anatomy of the Whole PersonsList Application

Figure 12: Anatomy of the whole PersonsList application implemented with SAP HANA extended application

services

https://sapui5.netweaver.ondemand.com/sdk/#docs/guide/HelloWorld.html
https://sapui5.netweaver.ondemand.com/sdk/#docs/guide/Bootstrap.html

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 56

3.5.2 Run PersonsList Application on SAP HANA XS Server

Hands-on Tasks

122. In editor tab select repository package Content p1940xxtrial dev perslist ui perslist-

web index.html.

123. To run the application frontend in a new browser tab press toolbar button “Run on server (F8)”.

Result

The PersonsList application frontend is launched in a new browser tab. The “First Name” input field is

already focused for user input and the “Person List” table displays three records that were fetched from the

application backend via XS-OData service.

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 57

3.5.3 Test PersonsList Application in Web Browser

To test the XSOData write access we enter first and last name of a new Person named Linda Clark into the

form fields and then press the Add Person button.

Hands-on Tasks

124. Enter first name Linda into the first input field that is already focused on application startup.

125. Press the right arrow keyboard button to move focus to the next input field ‘Last Name’.

NOTE: Inside a SAPUI5 form (or container) you move focus with keyboard arrow buttons (right arrow

keyboard button for next form field or left arrow keyboard button for previous form field) but not with the
TAB button. The TAB keyboard button is used to move focus between container controls (like from the form

in the table toolbar to the embedding table).

126. Enter Clark in the second input field “Last Name” and press the right arrow keyboard button to

select the Add “Person Button”.

127. Press form button “Add Person” to send the new person record to the application backend.

128. In the popup dialog press Ok button to confirmation the success message about the creation of a new

Person entity.

Result

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 58

After pressing the “Add Person” button (1) the entered person form data is sent to the backend via OData

service. The success message “Person entity has been successfully created” is displayed in a popup

dialog. After popup dialog confirmation, the new record “Linda Clark” occurs as new line inside the Persons

List table (3).

3.5.4 Check OData Write Access in SAP HANA Database

Finally we move to the SAP HANA catalog on backend side and look at the new entry for “Linda Clark” in the

Persons database table.

Hands-on Tasks

129. Open SAP HANA catalog.

130. Select node Catalog _SYS_BIC Tables p1940xxtrial.dev.perslist.data::mymodel.person.

131. Select context menu item Open Content.

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 59

Result

An auto-generated SQL SELECT statement to read all records from table

"_SYS_BIC"."p1940xxtrial.dev.perslist.data::mymodel.person" gets executed. The new record for

person “Linda Clark” gets displayed as last entry in the result table.

3.5.5 Publish PersonsList application to other SAP HANA Trial Account Users

Finally we make the PersonsList application accessible for all SAP HANA Trial account users by granting the

user role defined in section 3.2.6. to the public role.

Hands-on Tasks

132. From SAP HANA Web IDE editor open the Catalog via the green plus icon in the toolbar.

133. Open a SQL console by clicking the toolbar icon 'Open New SQL Editor' (blue SQL icon).

134. Copy the SQL code string from Source Code 9 into the opened SQL editor. Replace the

highlighted string corresponding to the name of your own trial account and user name.

Source Code 19: Call SQL procedure HCP.HCP_GRANT_TO_PUBLIC_ROLE() to grant user role to public role

call HCP.HCP_GRANT_TO_PUBLIC_ROLE('p1940xxtrial.dev.perslist.roles::user')

135. Execute the SQL command by clicking the toolbar icon Execute (green icon with triangle).

136. To run and test the PersonsList application select index.html and click Run on server from the

editor toolbar.

Result

The PersonsList application opens and you can send the URL to anyone else who has a SAP HANA trial

account user (or in general a SAP Community Network (SCN) user) to authenticate and run your

application.

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 60

3.6 1. Extension: Writing Server-Side JavaScript Code

Beside the data access via OData, we used in chapter 3.3.1 to access the person table data, SAP HANA XS

offers a second consumption model, i.e. server-side application programming in JavaScript to extract data

from SAP HANA.

You will now extend your HANA XS PersonsList application with a small example of such a server-side

JavaScript (see below Start Hands-on: 1. Extension) like depicted in Figure 13. The added serverlogic.xsjs

file contains the function getUserName() to retrieve the session user (1). This serverlogic.xsjs is called from

a script section in the SAPUI5 application’s index.html to display the result, i.e. the logged on user name, as

welcome message in the application header (2).

Preview

Figure 13: 1. Extension – Calling a server side XSJS service from SAPUI5 client by using JavaScript and jQuery

Further information:

For more details on SAP HANA XS server-side application programming in JavaScript read

 SAP HANA Developer Guide: Writing Server-Side JavaScript Code

 SAP HANA Cloud Platform > Debugging with SAP HANA Web-based Development Workbench

Design-Time Application Artifacts Created in this Step

File extension Object Description

.xsjs Server-Side

JavaScript Code

A file containing JavaScript code that can run in SAP HANA

Extended Application Services and that can be accessed via URL.

Prerequisites

 You have already successfully executed the PersonsList HANAXS application. The PersonsList

application is running and works as described in chapter 3.5.

http://help.sap.com/saphelp_hanaplatform/helpdata/en/90/878018cccd40f7a4b6754c04e2d34a/content.htm?frameset=/en/e4/87d388ba4045df982bff78103d6852/frameset.htm¤t_toc=/en/34/29fc63a1de4cd6876ea211dc86ee54/plain.htm&node_id=248
https://help.hana.ondemand.com/help/frameset.htm?1beaa7aaadc743568c8144066d005dab.html

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 61

3.6.1 Create a Simple Server-Side JavaScript Service within Descriptor .xsjs

Hands-on Tasks

Now we define a server-side JavaScript service to expose the name of the user which is logged on the

PersonsList application. For that you will add a corresponding .xsjs service descriptor file to the HANA

repository.

137. Under the package services add a new file serverlogic.xsjs.

138. Add the following code to the serverlogic.xsjs file:

Source Code 20: Server-side JavaScript service definition file serverlogic.xsjs to retrieve the session user name

function getUsername(){
 var username = $.session.getUsername();
 return username;
}
var result = getUsername();
$.response.setBody(result);

139. Save the new XSJS service descriptor to activate it.

3.6.2 Add XSJS Service to Your PersonsList Web Application

Now you will use now the XSJS service that was previously implemented in the PersonsList application to

display the name of the logged on user in the application header.

140. In the Editor browser tab (of SAP HANA Web-based Development Workbench) select the file Content

 p1940xxtrial dev perslist ui perslist-web index.html to open the corresponding

editor tab.

141. Add the highlighted code to the index.html.

Source Code 21: index.html with the included xsjs service to display the logged on user in the application

header

<!DOCTYPE HTML>
<html>
<head>
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<title>SAP HANA Cloud Platform E2E dev scenario: SAP HANA native
 PersonsList application</title>
<script src="/sap/ui5/1/resources/sap-ui-core.js" id="sap-ui-bootstrap"
 data-sap-ui-libs="sap.ui.commons, sap.ui.table,sap.ui.ux3"
 data-sap-ui-theme="sap_bluecrystal">
</script>

<script>
 sap.ui.localResources("views");

 var oAppHeader = new sap.ui.commons.ApplicationHeader("appHeader");
 oAppHeader.setLogoSrc("http://www.sap.com/global/images/SAPLogo.gif");
 oAppHeader.setLogoText("SAP HANA Cloud Platform e2e scenario:"
 + "PersonsList application in SAP HANA XS");
 oAppHeader.setDisplayWelcome(false);
 oAppHeader.setDisplayLogoff(false);
 oAppHeader.placeAt("header");

 var view = sap.ui.view({ id : "perslist-id", viewName : "views.perslist",
 type : sap.ui.core.mvc.ViewType.JS });
 view.placeAt("content");
</script>

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 62

<script>
 jQuery(document).ready(function() {
 jQuery.get("../../services/serverlogic.xsjs",function(result){
 var oAppHeader = sap.ui.getCore().byId("appHeader");
 oAppHeader.setDisplayWelcome(true);
 oAppHeader.setUserName(result);
 });
 });
</script>

</head>
<body class="sapUiBody" role="application">
 <div id="header"></div>
 <div id="content"></div>
</body>
</html>

NOTE: Know the code – How to call a server side XSJS service from a SAPUI5 application frontend?

SAPUI5 heavily uses jQuery, and the default flavor of SAPUI5 (the sap-ui-core.js bootstrap script) even
includes jQuery. We can therefore directly call the jQuery-API in our SAPUI5 index.html file to get the

logged in user name as a result of our server side XSJS service:

 jQuery(document).ready(function() { … }): run code as soon as the document is ready to be

manipulated. Read more details here …

 jQuery.get(xsjsServiceUrl, function(result){ … }): call server side XSJS service via relative

URL “../../services/serverlogic.xsjs” and pass the result to a client side callback function (in
our case an anonymous function). Read more details here …

 oAppHeader.setUserName(result);: in the anonymous callback function we set the ‘user name’

property of the ApplicationHeader UI5 control to the result value that was returned from the XSJS
service.

The $ sign is an alias for the jQuery object that is commonly used for jQuery source code like $(document
).ready() or $get().

142. Save index.html to activate it.

143. Run index.html as described in section 3.1.2 Run Blank SAP HANA XS Application in Web Browser.

Result

The PersonsList application frontend is launched in a new browser tab. The user ID of the logged on user is

displayed in the application header.

4 Glossary

NOTE: To ease reading we use short terms according to the following table.

http://jquery.com/
http://learn.jquery.com/using-jquery-core/document-ready/
https://api.jquery.com/jQuery.get/

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 63

Term Short term Description

Account A hosted environment provided to a customer
organization, representing a named collection of
configurations, authorizations, platform resources and
applications.

Account member member Indicates a user’s assignment to an account. As an
account member, a user automatically has the
permissions required to use the SAP HANA Cloud
Platform functionality within the scope of the
respective account. A user can be assigned to more
than one account.

Account user

 User (with name and password) for login to a SAP
HANA Cloud Platform account (via SAP HANA Cloud
Platform cockpit)

Example: p1940394512
Placeholder in tutorial: p1940xx

Customer account productive account Allows customers to build applications and host them
in a production environment for their own purposes. A
customer account can be purchased as part of a
predefined or tailored package.

Example: webidedx (customer account name
obtained from SAP)

Database user

DB user User (with name and password) for login to a SAP
HANA database. Needed for login to SAP HANA Web-
based Development Workbench.
NOTE: Gets auto-created for an account user on SAP
HANA Cloud Platform trial landscape with single SAP
HANA database. Not needed in this tutorial as it is
wrapped by the account user for sake of simplicity.

Example on trial SAP HANA instance: DEV_1A2B

Developer account trial account Offers access to the SAP HANA Cloud Platform trial
landscape for evaluation purposes. A developer
account on https://account.hanatrial.ondemand.com/
is free of charge and valid for an unlimited period. It
allows restricted use of the platform resources.

Example: p1940394512trial

Landscape host host SAP HANA Cloud Platform host.
Europe (customer account): hana.ondemand.com,
US (customer account): us1.hana.ondemand.com,
developer account hanatrial.ondemand.com

Partner account productive account Allows partners to build applications and sell them to
their customers. A partner account is available through
a partner program, which provides a package of
predefined resources and the opportunity to certify,
advertise, and ultimately sell products.

Productive SAP HANA
instance
see also Trial SAP HANA
Instance

Productive HANA
instance

SAP HANA database instance on SAP HANA Cloud
Platform that is designed for developing with SAP
HANA in a production environment. It is reserved for
your exclusive use, allowing you to work with SAP
HANA as with an on-premise system.

https://account.hanatrial.ondemand.com/

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 64

Term Short term Description

SAP Community Network SCN SAP's professional social network for SAP customers,
partners, employees and experts, which offers insight
and content about SAP solutions and services in a
collaborative environment: http://scn.sap.com . To use
SAP HANA Cloud Platform, you have to be registered
on SCN.

SAP HANA catalog HANA catalog SAP HANA native applications persist their content in
the HANA repository and, depending on the content
type, compile artifacts into the runtime catalog.

SAP HANA Cloud Platform HANA Cloud Platform SAP HANA Cloud Platform is the Platform-as-a-
Service (PaaS) offering from SAP, which enables SAP
partners and customers to deploy and use Java
applications in a cloud environment.

SAP HANA Cloud Platform
cockpit

cockpit A central point of entry to key information about your
accounts and applications, and for managing all
activities associated with your account.

SAP HANA Cloud Platform
identity service

SAP ID service The service is responsible for identity management
and authorization on SAP HANA Cloud Platform,
which you can use in your on-demand applications to
ensure proper identity management mechanism.

SAP HANA extended
application services

HANA XS A small-footprint application server, web server, and
basis (with configurable OData support, server-side JS
execution and full access to SQL and SQLScript) for
application development integrated into SAP HANA.

SAP HANA native
application

HANA native
application

Applications that use SAP HANA extended application
services integrated into SAP HANA.

SAP HANA repository HANA repository Integral part of the SAP HANA system and
development infrastructure that is used for central
storage, versioning and lifecycle management of
software artifacts.

SAP HANA Web-based
Development Workbench

HANA Web IDE Tools that enable access to and development of
repository and catalog objects from a remote location,
for example, using a Web browser.

Trial SAP HANA instance
see also Productive SAP HANA
Instance

trial HANA instance SAP HANA Cloud Platform provides SAP HANA
instances that allow you to develop with SAP HANA in
a trial environment. A trial SAP HANA instance
provides you with a shared database instance,
allowing you to work with SAP HANA in a managed
environment. Due to restrictions in place to ensure
user and data isolation, developers have limited
access rights

UI development toolkit for
HTML5

SAPUI5 SAP's enterprise-ready HTML5 rendering library for
client-side UI rendering and programming

Read more:

 SAP HANA Cloud Platform Documentation > Glossary

 SAP HANA Cloud Platform Documentation > SAP HANA Development

http://scn.sap.com/
https://help.hana.ondemand.com/help/frameset.htm?e67a1435bb571014b2758553897c59b6.html
https://help.hana.ondemand.com/help/frameset.htm?48be066aea98444188544d68714bbf3b.html

NOTE from April 2016: THIS TUTORIAL IS OUTDATED AND WILL NOT BE MAINTAINED ANY MORE

SAP HANA Cloud Platform end-to-end development scenario, runs on SAP HANA Cloud Platform trial landscape 65

5 Related Content

NOTE: Resources marked with symbol ► are directly related with topics that are covered in this tutorial: SAP

HANA native application development on SAP HANA Cloud Platform using the SAP HANA Web-based

Development Workbench.

5.1 SAP HANA Cloud Platform

 SAP Hana Cloud Platform – The In-Memory Platform-as-a-Service: product landing page

 SAP HANA Cloud Platform documentation: help landing page

 ►Introduction to SAP HANA Cloud Platform and Next Steps in SAP HANA Cloud Platform, openSAP:
open online courses delivered by SAP (Rui Nogueira), free of charge. See all course videos here …

 ►SCN blog & interactive online tutorial Try out Web-based HANA XS Development on SAP HANA Cloud
Platform by Jens Glander, SAP AG. NOTE: The application described in the online tutorial is the
same that is described in this PDF tutorial.

 ►SAP Online Help on SAP HANA Cloud Platform > Using a Trial SAP HANA Instance

 ►SAP Online Help on SAP HANA Cloud Platform > SAP HANA Development

 ►SAP Online Help on SAP HANA Cloud Platform > Developing with SAP HANA Web-based Tools

 SAP Online Help on SAP HANA Cloud Platform > Debugging with SAP HANA Web-based Development
Workbench

 SAP HANA Cloud Developer Center: SAP Community Network site where you can find information, news,
discussions, blogs, and more about SAP HANA Cloud Platform.

 SCN Cross-Technology space: find tutorials on how to implement cross-technology scenarios using a
combination of SAP technology products for mobile, cloud and data.

 SCN blog on “Videos of openSAP course “Introduction to SAP HANA Cloud Platform”" by Rui Nogueira,
SAP AG, Jan 2014

 SCN document on “SAP HANA Cloud Platform - Content Overview” by Matthias Steiner, SAP AG: content
overview about various SCN blog posts/documents about SAP HANA Cloud Platform

5.2 SAP HANA Extended Application Services

 SAP HANA Developer Center in SAP Community Network

 SAP HANA web site: Find out about the latest news updates, upcoming events, exclusive VIP access,
and learn more about SAP HANA through the expertise of SAP employees, customers, and partners.

 SAP HANA Academy: engage with SAP HANA through hours of free videos and projects

 SAP HANA Platform help documentation

 openSAP online course (free): access full course material on “Introduction to Software Development on
SAP HANA”

 ►SAP Help: SAP HANA Developer Guide > Developing Applications in Web-based Environments

 ►http://www.saphana.com/docs/DOC-4372: in this video, Thomas Jung, SAP AG, illustrates the Web-
based Development Workbench released with SAP HANA SPS7, 12:33 min, Dec 2013

 ►SCN blog "8 Easy Steps to Develop an XS application on the SAP HANA Cloud Platform" by Stoyan
Manchev, Oct 2013

 ►SCN blog “HANA XS development with the SPS07 Web IDE (focus on debugging)” by Kai-Christoph

Mueller, Nov 2013

 ►SCN tutorial PDF, on-premise version of the tutorial you read now: https://scn.sap.com/docs/DOC-

53591 Develop Your First SAP HANA Native Application on SAP HANA Platform Using the SAP HANA
Web-based Development Workbench, Bertram Ganz, Jens Glander, SAP AG, March 2014

5.3 UI Development Toolkit for HTML5 (aka SAPUI5)

 UI Development Toolkit for HTML5 Developer Center, SCN space for SAPUI5

 SAPUI5 SDK Demo Kit with developer guide documentation, control/API reference and Test Suite

 Get to Know the UI Development Toolkit for HTML5 (aka SAPUI5), SCN doc, Bertram Ganz, SAP AG,
October 2012

 Building SAP Fiori-like UIs with SAPUI5 in 10 Exercises: SCN tutorial on how to build SAP-Fiori like UIs
with SAPUI5 in 10 exercises, SAP AG, January 2014

http://hcp.sap.com/
http://help.sap.com/hana_cloud
https://open.sap.com/course/hanacloud1
https://open.sap.com/course/hanacloud2
http://scn.sap.com/community/developer-center/cloud-platform/blog/2014/01/08/videos-of-opensap-course-introduction-to-sap-hana-cloud-platform
http://scn.sap.com/community/developer-center/cloud-platform/blog/2014/04/15/sap-hana-web-ide-online-tutorial
http://scn.sap.com/community/developer-center/cloud-platform/blog/2014/04/15/sap-hana-web-ide-online-tutorial
https://thewebide.hana.ondemand.com/tutorials/hcptrial
https://help.hana.ondemand.com/help/frameset.htm?38686b0610404a5e9c261d189cc33cb9.html
https://help.hana.ondemand.com/help/frameset.htm?48be066aea98444188544d68714bbf3b.html
https://help.hana.ondemand.com/help/frameset.htm?48be066aea98444188544d68714bbf3b.html
https://help.hana.ondemand.com/help/frameset.htm?1beaa7aaadc743568c8144066d005dab.html
https://help.hana.ondemand.com/help/frameset.htm?1beaa7aaadc743568c8144066d005dab.html
http://scn.sap.com/community/developer-center/cloud-platform
http://scn.sap.com/community/developer-center/cross-technology
http://scn.sap.com/community/developer-center/cloud-platform/blog/2014/01/08/videos-of-opensap-course-introduction-to-sap-hana-cloud-platform
http://scn.sap.com/docs/DOC-33139
http://scn.sap.com/community/developer-center/hana
http://www.saphana.com/welcome
http://www.saphana.com/community/hana-academy
http://help.sap.com/hana_platform
https://open.sap.com/course/hana1-1
http://help.sap.com/saphelp_hanaplatform/helpdata/en/7f/99b0f952d04792912587c99e299ef5/content.htm?frameset=/en/ab/bf2ea42af54211bceb466d06fde2e3/frameset.htm¤t_toc=/en/34/29fc63a1de4cd6876ea211dc86ee54/plain.htm&node_id=85
http://www.saphana.com/docs/DOC-4372
http://scn.sap.com/community/developer-center/cloud-platform/blog/2013/10/17/8-easy-steps-to-develop-an-xs-application-on-the-sap-hana-cloud-platform
http://scn.sap.com/community/developer-center/hana/blog/2013/11/27/hana-xs-development-with-the-new-web-ide
https://scn.sap.com/docs/DOC-53591
https://scn.sap.com/docs/DOC-53591
http://scn.sap.com/community/developer-center/front-end
https://sapui5.netweaver.ondemand.com/sdk/#content/Overview.html
http://scn.sap.com/docs/DOC-31625
http://scn.sap.com/docs/DOC-51167

